

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.4.1

1.2.4.2

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.8.1

1.3.8.2

1.3.8.3

1.3.9

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

1.3.15

1.3.16

1.3.17

1.3.17.1

1.3.17.2

1.3.18

1.4

1.4.1

1.4.2

Table	of	Contents
Preface

Introduction

Who	is	this	book	for?

Background

The	book

The	code

Git

Formatting

Resources

Version

Background

JavaScript

JavaScript	classes

JSON

Git

Node,	npm,	and	nvm

HTTP

Server

Databases

MongoDB

Redis

SQL

SPA

SSR

React

Latency

CDN

Webhooks

Testing

Continuous	integration

Authentication

Tokens	vs.	sessions

localStorage	vs.	cookies

Browser	performance

Chapter	1:	Understanding	GraphQL	Through	REST

Introduction

GraphQL	as	an	alternative	to	a	REST	API

2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

2.1

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

2.1.7

2.1.8

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

4.1

4.1.1

4.1.2

4.1.3

4.1.4

5.1

5.1.1

A	simple	REST	API	server

A	simple	GraphQL	server

Querying	a	set	of	data

Filtering	the	data

Async	data	loading

Multiple	types	of	data

Security	&	error	handling

Tying	this	all	together

Part	I:	The	Spec
Chapter	2:	Query	Language

Document

Fields

Arguments

Fragments

Variables

Directives

Mutations

Subscriptions

Chapter	3:	Type	System

Schema

Scalar	types

Enum	types

Object	types

Query	&	Mutation	types

Lists

Non-null

Arguments

Unions

Interfaces

Chapter	4:	Validation	&	Execution

Validation

Resolvers

Execution

Error	handling

Part	II:	The	Client
Chapter	5:	Client	Dev

Anywhere:	HTTP

3

5.1.1.1

5.1.1.2

5.1.2

5.1.2.1

5.1.2.2

5.1.2.3

5.1.2.4

5.1.2.5

6.1

6.1.1

6.1.1.1

6.1.1.2

6.1.1.3

6.1.2

6.1.2.1

6.1.2.2

6.1.2.3

6.1.2.4

6.1.2.5

6.1.2.6

6.1.2.7

6.1.3

6.1.3.1

6.1.3.2

6.1.4

6.1.4.1

6.1.4.2

6.1.4.3

6.1.4.4

6.1.4.5

6.1.4.6

6.1.4.7

6.1.4.8

6.1.4.9

6.1.5

6.1.5.1

6.1.5.1.1

6.1.5.1.1.1

6.1.5.1.1.2

6.1.5.1.2

cURL

JavaScript

Client	libraries

Streamlined	request	function

Typing

View	layer	integration

Caching

DevTools

Chapter	6:	React

Setting	up

Build	options

App	structure

Set	up	Apollo

Querying

First	query

Loading

Polling

Subscriptions

Lists

Query	variables

Skipping	queries

Authentication

Logging	in

Resetting

Mutating

First	mutation

Listing	reviews

Optimistic	updates

Arbitrary	updates

Creating	reviews

Using	fragments

Deleting

Error	handling

Editing	reviews

Advanced	querying

Paginating

Offset-based

page

skip	&	limit

Cursors

4

6.1.5.1.2.1

6.1.5.1.2.2

6.1.5.2

6.1.5.3

6.1.5.3.1

6.1.5.3.2

6.1.5.4

6.1.5.5

6.1.5.5.1

6.1.5.5.2

6.1.5.5.3

6.1.5.6

6.1.5.6.1

6.1.5.6.2

6.1.5.7

6.1.5.8

6.1.5.9

6.1.6

6.1.6.1

6.1.6.1.1

6.1.6.1.2

6.1.6.1.3

6.1.6.2

6.1.6.3

7.1

8.1

9.1

10.1

11.1

11.1.1

11.1.1.1

11.1.1.2

11.1.2

11.1.2.1

11.1.2.2

11.1.2.3

11.1.2.4

after

orderBy

Updating	multiple	queries

Local	state

Direct	writes

Local	mutations

REST

Review	subscriptions

Subscription	component

Add	new	reviews

Update	on	edit	and	delete

Prefetching

On	mouseover

Cache	redirects

Batching

Persisting

Multiple	endpoints

Extended	topics

Linting

Setting	up	linting

Fixing	linting	errors

Using	linting

Uploading	files

Testing

Chapter	7:	Vue

Chapter	8:	React	Native

Chapter	9:	iOS

Chapter	10:	Android

Part	III:	The	Server
Chapter	11:	Server	Dev

Introduction

Why	build	a	GraphQL	server?

What	kind	of	GraphQL	server	should	I	build?

Building

Project	setup

Types	and	resolvers

Authentication

Data	sources

5

11.1.2.4.1

11.1.2.4.2

11.1.2.4.3

11.1.2.5

11.1.2.6

11.1.2.6.1

11.1.2.6.2

11.1.2.6.3

11.1.2.7

11.1.2.8

11.1.2.8.1

11.1.2.8.2

11.1.2.8.3

11.1.2.8.3.1

11.1.2.8.3.2

11.1.2.8.4

11.1.2.8.5

11.1.2.9

11.1.2.9.1

11.1.2.9.2

11.1.3

11.1.3.1

11.1.3.2

11.1.3.3

11.1.3.4

11.1.3.5

11.1.3.6

11.1.4

11.1.4.1

11.1.4.1.1

11.1.4.1.2

11.1.4.1.3

11.1.4.2

11.1.4.2.1

11.1.4.2.2

11.1.4.2.2.1

11.1.4.2.2.2

11.1.4.3

11.1.4.4

11.1.4.5

Setting	up

File	structure

Creating	reviews

Custom	scalars

Creating	users

Protecting	with	secret	key

Setting	user	context

Linking	users	to	reviews

Authorization

Errors

Nullability

Union	errors

formatError

Logging	errors

Masking	errors

Error	checking

Custom	errors

Subscriptions

githubStars

reviewCreated

Testing

Static	testing

Review	integration	tests

Code	coverage

User	integration	tests

Unit	tests

End-to-end	tests

Production

Deployment

Options

Deploying

Environment	variables

Database	hosting

MongoDB	hosting

Redis	hosting

Redis	PubSub

Redis	caching

Querying	in	production

Analytics

Error	reporting

6

11.1.5

11.1.5.1

11.1.5.1.1

11.1.5.1.2

11.1.5.1.3

11.1.5.1.4

11.1.5.2

11.1.5.3

11.1.5.4

11.1.5.5

11.1.6

11.1.6.1

11.1.6.2

11.1.6.2.1

11.1.6.2.2

11.1.6.2.2.1

11.1.6.2.2.2

11.1.6.3

11.1.6.3.1

11.1.6.3.2

11.1.6.4

11.1.6.5

11.1.6.5.1

11.1.6.5.2

11.1.6.5.3

11.1.6.5.4

11.1.6.5.5

11.1.6.6

11.1.6.7

11.1.6.7.1

11.1.6.7.2

11.1.6.7.3

11.1.6.7.4

11.1.6.7.5

11.1.6.7.5.1

11.1.6.7.5.2

11.1.6.7.6

11.1.6.8

11.1.6.8.1

11.1.6.8.2

More	data	sources

SQL

SQL	setup

SQL	data	source

SQL	testing

SQL	performance

REST

GraphQL

Custom	data	source

Prisma

Extended	topics

Mocking

Pagination

Offset-based

Cursors

after	an	ID

Relay	cursor	connections

File	uploads

Client-side

Server-side

Schema	validation

Apollo	federation

Federated	service

Federated	gateway

Extending	entities

Managed	federation

Deploying	federation

Hasura

Schema	design

One	schema

User-centric

Easy	to	understand

Easy	to	use

Mutations

Arguments

Payloads

Versioning

Custom	schema	directives

@tshirt

@upper

7

11.1.6.8.3

11.1.6.9

11.1.6.9.1

11.1.6.9.2

11.1.6.10

11.1.6.10.1

11.1.6.10.1.1

11.1.6.10.1.2

11.1.6.10.2

11.1.6.11

11.1.6.11.1

11.1.6.11.2

11.1.6.12

@auth

Subscriptions	in	depth

Server	architecture

Subscription	design

Security

Auth	options

Authentication

Authorization

Denial	of	service

Performance

Data	fetching

Caching

Future

8

Preface
	Hello	there,	dear	reader	 .	Welcome	to	the	Guide!	We	are	John	and	Loren,	your	authors.	John	created	jQuery,

and	Loren	is	slightly	less	famous	but	writes	good	 .	We’re	here	to	tell	you	about	GraphQL,	the	system	we	believe	will
eclipse	REST	as	the	best	way	to	fetch	data	from	servers.	We’ll	get	into	why	in	Chapter	1,	but	for	now,	here’s	the	story
of	this	book:

GraphQL	was	released	in	mid	2015,	and	its	adoption	has	been	accelerating	ever	since.	In	2016,	Github	switched	its
API	from	REST	to	GraphQL.	In	2017,	AWS	launched	a	GraphQL-based	platform	for	building	apps.	Both	npm	and	the
State	of	JavaScript	survey	named	2018	the	year	of	GraphQL.	John	and	Loren	both	realized	early	on	that	A)	GraphQL
was	going	to	be	very	important	for	app	development,	and	B)	a	great	book	on	GraphQL	didn’t	yet	exist!	We	each
decided	independently	to	write	one,	but	then	we	found	each	other	and—over	schnitzel	at	a	biergarten	in	Brooklyn—
decided	to	join	forces.

We’re	writing	the	complete	reference:	what	GraphQL	is,	why	to	use	it,	and	most	importantly,	how	to	use	it—on	the
server,	in	the	browser,	on	mobile,	with	React,	React	Native,	Vue,	Node,	Java,	and	Swift.	We’ll	take	you	step-by-step
through	building	an	app,	so	you	can	see	the	practical	need	behind	each	part	of	GraphQL.	We’re	doing	it	as	an	ebook
so	we	can	always	keep	it	up	to	date.	A	physical	book	would	quickly	fall	behind	best	practices	in	such	a	fast-moving
space.

We’d	like	to	thank	everyone	who	helped	out	with	this	book,	including	our	technical	reviewers	Tom	Coleman,	Brad
Crispin,	Abhi	Aiyer,	Oleksandr	Bordun,	Heather	Armstrong,	Justin	Krup,	Melek	Hakim,	Kamal	Radharamanan,	Lewi
Gilamichael,	and	Enno	Thoma,	our	designer	Genki	Hagata,	and	our	copy	editors	Lauren	Itzla,	Rachel	Lake,	and	Paul
Ramshaw.	We’d	also	like	to	thank	those	who	wrote	the	libraries	on	which	this	book	is	based,	especially	the	GraphQL
and	Apollo	communities.

If	you’d	like	to	improve	this	resource	for	those	who	read	after	you,	we	welcome	your	suggestions	in	the	form	of	GitHub
issues	or	PRs	on	the	book	text	repo	and	the	code	repo	 .

We’ve	found	that	building	apps	with	GraphQL	is	less	difficult	and	more	fun,	and	we	think	you’ll	be	similarly	impressed.
We	hope	you	enjoy	 .

John	Resig	and	Loren	Sands-Ramshaw

Brooklyn,	New	York

June,	2018

©	2020	The	GraphQL	Guide

Preface

9

https://githubengineering.com/the-github-graphql-api/
https://aws.amazon.com/appsync/
https://twitter.com/seldo/status/950794461235130368
https://medium.freecodecamp.org/i-just-asked-23-000-developers-what-they-think-of-javascript-heres-what-i-learned-9a06b61998fa
https://github.com/GraphQLGuide/book
https://github.com/GraphQLGuide/guide

Introduction
Who	is	this	book	for?
Background
The	book
The	code

Git
Formatting

Resources
Version

Who	is	this	book	for?
This	book	is	for	most	programmers.	If	you	write	software	that	fetches	data	from	a	server,	or	you	write	server	code	that
provides	data	to	others,	this	book	is	for	you.	It’s	particularly	relevant	to	frontend	and	backend	web	and	mobile
developers.	If	you	don’t	know	modern	JavaScript,	we	recommend	learning	that	first,	but	it’s	not	necessary.	For
example,	if	you	only	know	Ruby,	you	can	likely	follow	the	JavaScript	server	code	in	Chapter	11	well	enough	to	learn
the	important	concepts	of	a	GraphQL	server,	most	of	which	will	apply	to	using	the		graphql		gem	in	your	Ruby	server
code.

This	book	will	be	especially	poignant	to	these	groups	of	people:

Backend	devs	who	work	on	REST	APIs	and	who:
write	a	lot	of	similar	code	to	fetch	data	and	format	it	into	JSON,
maintain	view-	or	device-specific	endpoints,	or
have	multiple	APIs	that	use	overlapping	business	data.

Frontend	devs	who	either:
don’t	use	a	caching	library,	and	manually	keep	track	of	what	data	has	already	been	fetched	from	the	server,
or
use	a	cache,	and	write	a	lot	of	code	to	fetch	data	over	REST	and	put	it	in	the	cache	(we’re	looking	at	you,
Reduxers).

Background
We	have	a	Background	chapter	that	provides	concise	introductions	to	various	background	topics.	You’re	welcome	to
either	look	through	them	now	or	individually	as	you	go	along—at	the	beginning	of	a	section,	you’ll	find	a	list	of	topics	it
assumes	knowledge	of,	like	the	Anywhere:	HTTP	section,	which	has	two	listed:

Background:	HTTP,	JSON

Some	topics	like	Git	and	Node	are	necessary	for	following	along	with	the	coding.	Others,	like	Tokens	vs.	sessions,	are
nice	to	know,	but	not	necessary.

The	book

Introduction

10

While	this	book	is	great	when	read	cover-to-cover,	it’s	organized	as	a	reference	text,	so	you	can	also	use	it	to	look	up
a	specific	topic.	For	instance,	if	you’re	familiar	with	most	GraphQL	types	but	want	to	learn	about	Unions,	you	can	look
them	up	in	the	Table	of	Contents	under	Chapter	3:	Type	System—Section	9:	Unions.	Or	if	you’re	already	doing	basic
queries	in	your	React	app,	and	you	want	to	implement	infinite	scrolling,	you	can	look	it	up	under	Chapter	6:	React—
Section	5:	Advanced	querying—Paginating.

Chapter	1	introduces	GraphQL	and	shows	why	it’s	better	than	REST.

Chapters	2	and	3	explain	the	language	itself	and	its	type	system.

Chapter	4	goes	in	depth	on	how	a	GraphQL	server	responds	to	a	query.	It’s	great	for	a	full	understanding	of	the
technology,	but	you	don’t	need	to	know	it	unless	you’re	contributing	to	a	GraphQL	server	library.	So	it’s	totally	fine	to
skip	this—you’ll	still	understand	everything	if	you	go	straight	to	Chapter	11,	the	practical	server-coding	chapter.

Chapter	5:	Client	Dev	is	the	first	of	the	coding	chapters,	and	introduces	common	concepts	among	client	libraries.
Then	we	have	a	chapter	for	each	library:

Chapter	6:	React
Chapter	7:	Vue
Chapter	8:	React	Native
Chapter	9:	iOS
Chapter	10:	Android

Chapter	11:	Server	Dev	is	our	looooong	server-coding	chapter	 .	All	of	the	examples	are	in	Node	with	the		apollo-
server-express		library,	but	almost	all	of	the	concepts	can	be	applied	to	other	languages’	GraphQL	libraries.

The	code
We	intersperse	blocks	of	code	throughout	the	text.	When	we	add	code	to	a	file	that	we’ve	shown	previously,	we	often
just	display	the	additions	and	some	context,	with	ellipses	(...)	in	place	of	existing	code.	These	additions	will	be
clearest	if	you	read	the	book	with	the	code	open	in	another	window.	Further,	we	believe	humans	usually	learn	better	if
they	write	things	out	themselves,	so	we	encourage	you	to	write	out	the	code	for	each	step,	and	get	it	working	on	your
computer	before	moving	on	to	the	next	step.

We	recommend	using	Chrome	and	VS	Code.

Code	snippets	are	better	formatted	and	sized	in	the	PDF	version	of	the	book.	If	you’re	reading	this	in	EPUB	or	MOBI
format	on	your	phone,	turning	sideways	into	landscape	mode	will	help	reduce	code	snippet	wrapping.

Git
In	Chapters	6–11,	you’ll	learn	through	writing	an	app,	step	by	step.	Each	chapter	has	its	own	repository.	Each	step
has	a	branch	in	that	repo,	for	example,	branch		0		is	the	starter	template,	branch		1		has	the	code	you	write	in	step	1,
etc.	The	branches	we	link	to	in	the	text	also	have	a	version	number,	and	have	the	format:		[step]_[version]	.	When
the	first	version	of	the	Guide	was	published,	the	Chapter	6	code	version	was		0.1.0	,	so	step	1	linked	to	branch
	1_0.1.0	.	The	current	version	is		0.2.0	,	so	step	1	links	to		1_0.2.0	.

If	you	skip	the	beginning	of	Chapter	6	and	go	straight	to	the	Listing	reviews	section,	it	says	to	start	with	step	9
(9_0.2.0).	So	we	can	look	at	the	app	in	that	state	with	these	terminal	commands:

git	clone	https://github.com/GraphQLGuide/guide.git

cd	guide/

git	checkout	9_0.2.0

npm	install

npm	start

Introduction

11

https://code.visualstudio.com/

Check	out	the	git	and	npm	background	sections	if	you’re	unfamiliar	with	these	commands.

If	we	get	stuck,	we	can	look	at	the	diff	between	step	9	and	step	10	with	GitHub’s	compare	feature:

	github.com/[repository]/compare/[tag	1]...[tag	2]	

which	in	our	case	would	be:

	github.com/GraphQLGuide/guide/compare/9_0.2.0...10_0.2.0	

We	can	also	see	the	solution	to	the	current	step	by	checking	out	the	next	step:

git	checkout	10_0.2.0

npm	start

Formatting
All	the	JavaScript	code	is	ES2016	and	formatted	with	prettier	with	two	settings:

	.prettierrc	

singleQuote:	true

semi:	false

This	means		'		instead	of		"		for	string	literals	and	no	unnecessary	semicolons.

Resources
If	you	run	into	issues,	we	recommend	posting	to	Stack	Overflow	with	the	relevant	tag,	for	instance		react-apollo		for
Chapter	6.	If	you	have	the	Full	edition,	you	can	also	ask	the	community	in	the	#support	Slack	channel	or	email	the
technical	support	address	we	gave	you.

If	the	issue	is	with	our	code,	please	search	the	repository’s	issues	to	see	if	it’s	an	existing	bug,	and	if	it’s	new,	submit
it!	 	

github.com/GraphQLGuide/guide/issues

Another	important	resource	is	the	docs!	Here	they	are	for	each	library:

Chapter	6	and	8:		react-apollo	
Chapter	7:		vue-apollo	
Chapter	9:	Apollo	iOS
Chapter	10:		Apollo-Android	
Chapter	11:		apollo-server-express	

Version
Book	version:		r5		(changelog)

Published	May	23,	2020

As	we	write	more	of	the	book,	we’ll	send	you	new	versions	of	it	(using	the	email	address	on	the	GitHub	account	you
connected	when	you	purchased	the	book	from	graphql.guide).

Introduction

12

https://github.com/GraphQLGuide/guide/compare/9_0.2.0...10_0.2.0
https://prettier.io/
https://prettier.io/docs/en/options.html
https://stackoverflow.com/questions/ask?tags=react-apollo
https://github.com/GraphQLGuide/guide/issues
https://www.apollographql.com/docs/react/
https://github.com/akryum/vue-apollo
https://www.apollographql.com/docs/ios/
https://github.com/apollographql/apollo-android
https://www.apollographql.com/docs/apollo-server/
https://github.com/GraphQLGuide/book/releases
https://graphql.guide

Chapter	6

Code	version:		0.2.0		(changelog)

react-apollo	2.5

graphql	0.14

react	16.8

Chapter	11

Code	version:		0.2.0		(changelog)

apollo-server	2.12.0

Introduction

13

https://github.com/GraphQLGuide/guide/blob/master/CHANGELOG.md
https://github.com/GraphQLGuide/guide-api/blob/master/CHANGELOG.md

Chapter:	Background
Chapter	contents:

JavaScript
JavaScript	classes
JSON
Git
Node,	npm,	and	nvm
HTTP
Server
Databases

MongoDB
Redis
SQL

SPA
SSR
React
Latency
CDN
Webhooks
Testing
Continuous	integration
Authentication

Tokens	vs.	sessions
localStorage	vs.	cookies

Browser	performance

This	chapter	provides	concise	introductions	to	various	background	topics.	You’re	welcome	to	either	read	them	all	up
front	or	individually	as	you	go	along—at	the	beginning	of	a	section,	you’ll	find	a	list	of	topics	it	assumes	knowledge	of,
like	the	Anywhere:	HTTP	section,	which	has	two	listed:

Background:	HTTP,	JSON

Some	topics,	like	Git	and	Node,	are	necessary	for	following	along	with	the	coding.	Others,	like	Tokens	vs.	sessions,
are	nice	to	know,	but	not	necessary.

JavaScript
Most	of	the	code	in	the	book	is	in	modern	JavaScript.	If	you’re	new	to	JS,	you	can	learn	through	interactive	courses,
video	(intro	and	intermediate),	or	a	combination.

If	you	know	traditional	JS,	but	some	of	the	new	syntax	is	unfamiliar	(for	instance	async/await),	here’s	a	course	on
ES6.

JavaScript	classes

Background

14

https://www.codecademy.com/learn/introduction-to-javascript
https://www.leveluptutorials.com/tutorials/javascript-tutorials?ref=guide
https://javascript30.com/?ref=guide
https://www.khanacademy.org/computing/computer-programming/programming
https://es6.io/?ref=guide

A	class	is	a	template	for	an	object.	With	this	class:

class	Animal	{

		constructor(name)	{

				this.name	=	name

		}

		speak()	{

				console.log(`${this.name}	makes	a	noise.`)

		}

}

We	can	make	an	object,	or	instance	of	the	class:

const	loren	=	new	Animal('Loren')

	loren		is	now	an	instance	of		Animal	.	When	JavaScript	evaluated		new	Animal('Loren')	,	it	created	a	new	object	and
called	the		constructor		method	with	the	string		'Loren'	,	which	set	the	object’s	property		name		to		'Loren'		and
(implicitly)	returned	the	new	object.	Now	when	we	do:

console.log(loren.name)

loren.speak()

We	see	the	output:

Loren

Loren	makes	a	noise.

The	class		Animal		is	a	template	that	we	can	create	multiple	different	instances	of:

const	loren	=	new	Animal('Loren')

const	graphy	=	new	Animal('Graphy')

loren.speak()

graphy.speak()

Results	in:

Loren	makes	a	noise.

Graphy	makes	a	noise.

Both	of	the	instances	have	the		.speak()		method,	but	they	have	different	values	for	the		.name		property,	so
	.speak()		logs	different	strings.

We	can	also	create	subclasses	by	using	the	syntax		class	SubClass	extends	SuperClass	:

class	Animal	{

		constructor(name)	{

				this.name	=	name

				console.log(`${this.name}	is	a	${this.constructor.name}.`)

		}

		speak()	{

				console.log(`${this.name}	makes	a	noise.`)

		}

}

class	Dog	extends	Animal	{

		constructor(name)	{

				super(name)

Background

15

				console.log('Subspecies:	Canis	lupus	familiaris.')

		}

}

	Dog		is	a	subclass	of		Animal	.		this.constructor.name		is	the	name	of	the	class	('Dog'		if		new	Dog()		or		'Animal'		if
	new	Animal()).	In	its	constructor,	it	calls	the	superclass’s	constructor	(super(name))	and	then	logs.	So	now	if	we	do:

const	graphy	=	new	Dog()

console.log(graphy.name)

graphy.speak()

We	see:

Graphy	is	a	Dog.

Subspecies:	Canis	lupus	familiaris.

Graphy

Graphy	makes	a	noise.

A	subclass	can	override	a	superclass’s	method	or	define	new	methods:

class	Dog	extends	Animal	{

		constructor(name)	{

				super(name)

		}

		speak()	{

				console.log(`${this.name}	barks.`)

		}

}

const	loren	=	new	Animal('Loren')

loren.speak()

const	graphy	=	new	Dog('Graphy')

graphy.speak()

graphy.sit()

Loren	is	a	Animal.

Loren	makes	a	noise.

Graphy	is	a	Dog.

Subspecies:	Canis	lupus	familiaris.

Graphy	barks.

Graphy	sits.

If	we	tried	to	do		loren.sit()	,	we	would	get	an	error	because		Animal		doesn’t	have	a		.sit()		method:

loren.sit()

						^

TypeError:	loren.sit	is	not	a	function

We	can	have	multiple	subclasses,	for	instance		Rabbit		and		Cat	,	and	subclasses	can	have	subclasses,	for	instance
	class	Lynx	extends	Cat	.

JSON
JSON	is	a	file	format	for	data	objects.	The	objects	are	structured	in	attribute–value	pairs,	where	the	attribute	is	a	string
and	the	value	can	be	one	of	the	following	types:

Background

16

Number:		1.14	
String:		"foo"	
Boolean:		true	
null:		null		
Array	of	other	types:		["foo",	true,	1.14]	
Object:		{	"name":	"john"	}	

In	JSON	documents,	whitespace	doesn’t	matter,	and	commas	go	between	attribute–value	pairs	and	between	items	in
arrays.	Here’s	an	example,	formatted	with	nice	whitespace:

{

		"authors":	[

				{

						"name":	"john",

						"wearsGlasses":	true

				},

				{

						"name":	"loren",

						"wearsGlasses":	true

				}

]

}

It’s	also	valid	JSON	to	have	an	array	at	the	top	level	of	the	document,	e.g.:

	[{	"name":	"john"	},	{	"name":	"loren"	}]	

In	JavaScript,	if	we	have	this	document	in	a	string,	we	can	parse	it	to	create	a	JavaScript	object	with	the	same	data:

const	jsObject	=	JSON.parse(jsonString)

When	working	with	raw	HTTP	responses	that	contain	a	JSON	body,	we	have	to	use		JSON.parse()		to	get	the	data	into
an	object.	But	we’ll	mostly	be	working	with	libraries	that	take	care	of	this	step	for	us.

Git
Git	is	a	version	control	system	for	saving	your	code	and	keeping	a	history	of	the	changes.	Unfamiliar?	Try	this
interactive	tutorial

Node,	npm,	and	nvm
Node	is	what	runs	JavaScript	on	a	server.	npm	is	a	JavaScript	package	manager	and	registry.	Their		npm		command-
line	tool	manages	the	packages	(libraries	of	JavaScript	code)	that	our	app	depends	on,	helping	us	install	and	upgrade
them.	Their	registry	stores	the	content	of	the	packages	and	makes	them	available	for	download—it	has	more
packages	than	any	other	registry	in	the	history	of	software!	We	use	npm	packages	both	with	code	that	runs	on	the
server	in	Node	and	with	code	that	runs	on	the	client—in	the	browser	or	in	React	Native.

We	recommend	installing	Node	with		nvm		(the	Node	Version	Manager):

$	curl	-o-	https://raw.githubusercontent.com/creationix/nvm/v0.33.8/install.sh	|	bash

$	nvm	install	node

$	nvm	alias	default	node

This	installs	the	latest	version	of	Node.	Then	in	a	new	terminal	window,	we	can	see	the	version	number	with:

Background

17

https://en.wikipedia.org/wiki/Git
https://try.github.io/
https://nodejs.org/en/
https://www.npmjs.com/
https://github.com/creationix/nvm

$	node	-v

We	can	keep	track	of	which	projects	use	which	versions	of	node	by	adding	a		.nvmrc		file	to	the	root	of	each	project.	It
contains	a	version	number	(like		8		or		8.11.3)	or		node		to	use	the	latest	stable	version.	Then	when	we	switch
projects,	we	run		nvm	use		to	switch	to	that	project’s	version	of	node:

$	nvm	use

Found	'/guide/.nvmrc'	with	version	<8>

Now	using	node	v8.11.3	(npm	v5.6.0)

	npm		is	a	command-line	tool	that	is	installed	along	with	Node.	When	we	want	to	use	npm	packages	in	our	project,	we
create	a		package.json		file	in	the	project’s	root	directory:

{

		"name":	"my-project",

		"private":	true

}

Then	we	install	the	package	with:

$	npm	install	graphql

If	we’re	using	a	recent	version	of	npm	(5.0	or	higher),	the	package	name	and	version	will	now	be	saved	in	our
	package.json	:

{

		"name":	"my-project",

		"private":	true,

		"dependencies":	{

				"graphql":	"^0.13.1"

		}

}

We	see	the	current	package’s	version,	which	was		0.13.1		at	time	of	writing.	npm	packages	follow	SemVer,	a
convention	for	version	numbering:

	[major	version].[minor	version].[patch	version]	

Major	version	changes	mean	that	the	library’s	API	has	been	changed	in	an	incompatible	way—if	we	write	our	code	to
use	version		1.0.0		of	a	library	(for	example,	using	the	library’s	function		doThis()),	our	code	will	probably	break	if	we
switch	to	version		2.0.0	.	(For	example,	if	the	library	renamed		doThis		to		doThat	,	and	our	code	were	still	called
	doThis()	,	we’d	get	an	error.)	Minor	and	patch	version	changes	do	not	break	the	API—if	we	write	our	code	using
version		1.0.0		of	a	library,	we	can	safely	upgrade	to	version		1.0.8		or		1.4.0	.

Minor	version	changes	mean	that	functionality	has	been	added—if	we	write	our	code	using	version		1.4.0	,	it	may
break	if	we	switch	to	version		1.3.0	,	because	it	may	use	a	feature	introduced	in	minor	version	4.	Patch	version
changes	mean	that	bugs	have	been	fixed—if	we	switch	from		1.0.8		to		1.0.7	,	our	code	may	stop	working	because
of	the	bug	that	was	fixed	in	patch	version	8.

The	one	exception	to	the	above	is	that	version	numbers	with	a	major	version	of	0	don’t	have	a	stable	API,	so	going
from		0.0.1		to		0.0.2		could	be	breaking—as	could	going	from		0.1.0		to		0.2.0	.

A	caret	 	̂ 		before	a	version	number	means	that	our	code	depends	on	any	version	compatible	with	that	number—for
example,	if	we	had	a	dependency		"foo":	"^1.4.0"	,	our	code	should	work	with	any	versions	between		1.4.0		and
	2.0.0	,	such	as		1.4.1		or		1.11.2	.

We	can	also	see	that	we	have	a	new		node_modules/		folder,	and	it	contains	folders	with	the	package	code:

Background

18

$		ls	node_modules/

graphql		iterall

	iterall		was	downloaded	as	well	because	it	is	a	dependency	of		graphql	,	which	we	can	see	if	we	look	at	its
	package.json	:

$	cat	node_modules/graphql/package.json

{

		…

		"dependencies":	{

				"iterall":	"^1.2.0"

		},

		"homepage":	"https://github.com/graphql/graphql-js",

		"name":	"graphql",

		"version":	"0.13.1"

}

We	don’t	want	to	save	downloaded	packages	in	git,	so	we	exclude	it:

$	echo	'node_modules/'	>>	.gitignore

If	we’re	not	in	an	existing	git	repository,	we	run		git	init		to	initialize.	Then	we	can	save	our	files	with		git	add
<filename>		and	a	commit:

$	git	add	package.json	.gitignore

$	git	commit	-m	'Added	the	graphql	package'

When	our	code	is	cloned	(by	others,	or	by	us	in	the	future),	there	will	be	no		node_modules/	.	If	our	code	is	at
	https://github.com/me/app	,	then	we	would	do:

$	git	clone	https://github.com/me/app.git

$	cd	app

$	ls	-a

.		..		.git		.gitignore		package.json

We	run		npm	install		to	download	all	the	packages	listed	in		package.json		into		node_modules/	:

$	npm	install

added	2	packages	in	1.026s

$	ls	node_modules/

graphql		iterall

And	then	we	could	use	the	package	in	our	JavaScript	like	this:

import	{	graphql	}	from	'graphql'

…

graphql(schema,	query).then(result	=>	{

		console.log(result);

})

HTTP

Background

19

HTTP	is	a	format	for	sending	messages	over	the	internet.	It	is	used	on	top	of	two	other	message	formats—IP	(which
has	an	IP	address	and	routes	the	message	to	the	right	machine)	and	TCP	(which	has	a	port	number	and	resends	any
messages	that	are	lost	in	transit).	An	HTTP	message	adds	a	method	(like		GET		or		POST),	a	path	(like		/graphql),
headers	(like	the		Bearer		header	we	use	for	authentication),	and	a	body	(where	GraphQL	queries	and	responses	go).

When	we	enter	a	URL	like		http://graphql.guide/		into	our	browser,	it	goes	through	these	steps:

Browser	asks	DNS	server	what	the	IP	address	of		graphql.guide		is.
DNS	server	responds	with		104.27.191.39	.

We	can	see	for	ourselves	what	the	DNS	server	says	using	the		nslookup		command:

$	nslookup	graphql.guide

Server:									8.8.4.4

Address:								8.8.4.4#53

Non-authoritative	answer:

Name:			graphql.guide

Address:	104.27.191.39

Browser	sends	out	a	message	to	the	internet	that	looks	like	this:

IP	to	104.27.191.39

TCP	to	port	80

HTTP	GET	/

Internet	routers	look	at	the	IP	part,	see	it	is	addressed	to		104.27.191.39	,	and	pass	it	off	to	a	router	that	is	closer
to		104.27.191.39	.

The	message	arrives	at		104.27.191.39		(the	IP	address	of	the	Guide	server),	which	opens	the	message,	sees
that	it’s	trying	to	connect	to	port	80,	and	passes	the	message	to	whatever	server	program	(in	this	case,	a	Node.js
process)	is	listening	at	the	port.

An	IP	address	is	the	number	ID	of	a	computer	on	the	internet,	and	we	can	think	of	a	port	as	the	number	of	a
program	running	on	that	computer.

The	server	process	sees	that	the	client	wants	to	GET	/,	the	root	path,	and	sends	back	an		index.html		to	the
client.

This	sequence	is	a	little	simplified—it	actually	takes	a	separate	round-trip	message	to	set	up	the	TCP
connection,	and	for		graphql.guide	,	the	client	is	actually	redirected	to	HTTPS	at	the	beginning,	which	uses	port
443	and	sets	up	an	SSL	connection	before	sending	HTTP	GET	/.

Server
The	term	server	may	refer	to:

1.	 a	computer	connected	to	a	network	(usually	the	internet)
2.	 a	process	running	on	that	computer	that	listens	to	one	or	more	ports
3.	 the	group	of	computers/processes	that	share	the	responsibility	of	handling	requests

In	web	development,	servers	are	usually	either	static	file	servers	(which	serve	files	like	our	HTML,	images,	and	JS
bundle),	application	(app)	servers	(the	ones	that	power	our	API	and	that	the	client	talks	to)	or	database	servers.
Server-side	either	means	app	servers	or	everything	that’s	not	the	client-side	(including	file,	app,	and	database
servers,	as	well	as	any	other	servers	they	talk	to).

Background

20

Databases
Databases	are	organized	collections	of	data	stored	on	a	computer.	That	computer	is	called	a	database	server,	and	the
computer	querying	the	database	(usually	an	app	server)	is	called	the	database	client.	Different	databases	organize
their	data	differently,	store	it	differently,	and	communicate	differently.	There	are	two	types	of	database	storage:	in-
memory	(the	data	is	stored	in	RAM,	and	would	be	lost	in	the	event	of	a	power	outage)	and	persistent	(the	data	is
stored	on	disk—a	hard	drive	or	SSD).	Redis	is	primarily	used	as	an	in-memory	database,	whereas	MongoDB	and
SQL	databases	are	usually	used	as	persistent	databases.

There	are	two	main	categories	of	databases:

Relational	databases:	These	usually	use	SQL	(Structured	Query	Language),	and	follow	the	relational	model,
with	tables	of	columns,	rows,	and	unique	keys.	The	most	popular	relational	databases	are	SQLite	for
development	and	PostgreSQL	for	production.
Non-relational	(NoSQL)	databases:	These	usually	use	their	own	query	language,	although	some	(like	the
Dgraph	graph	database	and	distributed	FaunaDB)	support	GraphQL	as	a	way	to	query	the	database!	 	There
are	a	few	categories	of	NoSQL	databases:

Document	databases	like	MongoDB
Graph	databases	like	Neo4J
Key-value	databases	like	Redis
Wide-column	databases	like	Cassandra
Multi-model	which	support	multiple	data	models

In	this	section	we’ll	look	at	three	databases:

MongoDB
Redis
SQL

MongoDB
While	MongoDB	can	be	used	as	an	in-memory	database,	it’s	usually	used	as	a	persistent	database.	The	data	is
organized	in	collections	of	JSON-like	documents.	Developers	communicate	with	the	database	using	MongoDB
schema	statements:

import	{	MongoClient	}	from	'mongodb'

const	DATABASE_SERVER_URL	=	'mongodb://my-database-server-domain.com:27017/guide'

const	client	=	new	MongoClient(DATABASE_SERVER_URL)

const	example	=	async	()	=>		{

		await	client.connect()

		const	db	=	client.db()

		//	get	the	collection	with	the	name	'users'

		const	users	=	db.collection('users')

		//	insert	a	new	user	document	into	the	users	collection

		await	users.insertOne({

				firstName:	'Loren',

				email:	'loren@graphql.guide'

		})

		//	update	the	document	where	`firstName`	is	Loren	by

		//	setting	the	`lastName`	field	(a	new	field)

		await	users.updateOne(

				{	firstName:	'Loren'	},

				{

Background

21

https://dgraph.io/
https://fauna.com/
https://neo4j.com/
http://cassandra.apache.org/
https://en.wikipedia.org/wiki/Multi-model_database
https://docs.mongodb.com/manual/crud/

						$set:	{	lastName:	'Sands-Ramshaw'	}

				}

)

		//	fetch	the	document	where	`firstName`	is	Loren

		const	loren	=	await	users.findOne({	firstName:	'Loren'	})

		console.log(loren)

		users.deleteOne({	_id:	loren._id	})

}

example()

In	practice,	we	should	handle	errors—either	with	a	try-catch	or	.catch	(await	users.findOne().catch(e	=>
console.log(e)))).

This	would	log	something	like:

{

		_id:	ObjectId('5d24f846d2f8635086e55ed3'),

		firstName:	'Loren',

		lastName:	'Sands-Ramshaw',

		email:	'loren@graphql.guide'

}

When	a	new	document	is	inserted	into	a	collection,	if	no	ID	is	provided	(in	the	field	named		_id),	then	a	unique
ObjectId	is	generated.	We	usually	interact	with	ObjectIds	as	strings,	but	they	also	encode	the	creation	time,	which	we
can	get	with		loren._id.getTimestamp()	.

The	above	code	uses	the		mongodb		module,	which	is	the	official	Node.js	driver	provided	by	MongoDB.	It's	always	up	to
date	with	security	patches,	it	supports	the	latest	MongoDB	versions,	and	it	includes	support	for:

Transactions
Aggregations	(collection	and	database	level)
Retryable	reads	and	writes
Client-side	field-level	encryption

Querying	with		mongodb		is	through	MongoDB	schema	statements.	It	can	be	simplified	in	some	ways	with	the
	mongoose		module,	the	main	JavaScript	ORM	for	MongoDB.	We’ll	use	Mongoose	in	Chapter	1	and		mongodb		in
Chapter	11:	Server	Dev.

An	ORM,	or	object-relational	mapping,	is	a	library	that	models	database	records	as	objects.	In	the	case	of
Mongoose,	it	models	MongoDB	documents	as	JavaScript	objects.	It	also	does	schema	validation,	type	casting,
query	building,	and	business	logic	hooks.

Redis
Redis	is	an	in-memory	key-value	database	with	optional	durability:

in-memory:	data	is	read	from	and	written	to	memory	(RAM)	and	not	durable	(data	is	lost	on	restart	or	power	loss)
key-value:	data	is	stored	in	values	and	fetched	by	keys	(unique	strings)
optional	durability:	data	can	be	periodically	persisted	(written	to	disk),	thus	making	almost	all	the	data	(minus
whatever	changed	in	the	last	couple	seconds	since	the	last	write	to	disk)	durable	(able	to	be	recovered	on	restart)

Redis	is	usually	used	as	a	cache—for	data	that	we	want	quick	access	to	but	are	okay	losing.	We	can	install	locally
with		brew	install	redis		and	start	with		brew	services	start	redis	.	Then	we	can	query	using	the		ioredis		npm
library:

import	Redis	from	'ioredis'

Background

22

https://docs.mongodb.com/manual/reference/mongodb-extended-json/#ObjectId
https://mongodb.github.io/node-mongodb-native/
https://mongodb.github.io/node-mongodb-native/3.4/api/ClientSession.html#withTransaction
https://mongodb.github.io/node-mongodb-native/3.4/api/Collection.html#aggregate
https://mongodb.github.io/node-mongodb-native/3.4/api/Db.html#aggregate
https://mongodb.github.io/node-mongodb-native/3.4/reference/client-side-encryption/
https://mongoosejs.com
https://en.wikipedia.org/wiki/Redis
https://www.npmjs.com/package/ioredis

const	redis	=	new	Redis()

await	redis.set('name',	'The	Guide')

const	name	=	await	redis.get('name')

//	'The	Guide'

redis.del('name')

This	uses	the	three	basic	commands:	SET,	GET,	and	DEL	(delete).	Here	the	value	is	just	a	string	('The	Guide'),	but
there	are	other	types	of	data	that	values	can	be,	including:

lists	(list	of	strings,	ordered	by	time	of	insertion)
sets	(unique,	unordered	strings)
sorted	sets
hashes	(similar	to	JS	objects)

Hash	commands	include	HMSET	(hash	multiple	set)	and	HGET	(hash	get	single	field):

await	redis.hmset('latest-review',	{	stars:	'5'	text:	'A+'	})

const	reviewStars	=	parseInt(await	redis.hget('latest-review',	'stars'))

//	5

redis.del('latest-review')

SQL
SQL	(Structured	Query	Language)	is	a	language	for	querying	relational	databases	like	SQLite	and	PostgreSQL.
Relational	databases	have	tables	instead	of	MongoDB's	collections,	and	rows	instead	of	documents.	A	row	is	made
up	of	values	for	each	columnn	in	the	table.	Columns	have	a	name	and	a	type—for	instance	a		reviews		table	with	a
column	named		star		of	type		INTEGER	,	which	could	have	a	value	of		5		in	the	first	row:

Unlike	MongoDB	collections,	each	table	has	a	schema—its	name	and	list	of	columns.	Both	the	table	schema	and
query	statements	are	written	in	SQL.	Here	are	the		CREATE	TABLE		and		INSERT		statements	to	create	the	pictured	table
and	rows,	and		SELECT		to	view	the	table's	contents:

$	brew	install	sqlite

$	sqlite3

SQLite	version	3.31.1	2020-01-27	19:55:54

Enter	".help"	for	usage	hints.

Connected	to	a	transient	in-memory	database.

Use	".open	FILENAME"	to	reopen	on	a	persistent	database.

sqlite>	CREATE	TABLE	reviews(

			...>			id	INTEGER	PRIMARY	KEY,

			...>			text	TEXT	NOT	NULL,

			...>			stars	INTEGER

			...>);

sqlite>	INSERT	INTO	reviews	VALUES(1,	'Breathtaking',	5);

sqlite>	SELECT	*	FROM	reviews;

1|Breathtaking|5

sqlite>	INSERT	INTO	reviews	VALUES(2,	'tldr',	1);

sqlite>	INSERT	INTO	reviews	VALUES(3,	"Now	that's	a	downtown	job!",	null);

sqlite>	SELECT	*	FROM	reviews;

1|Breathtaking|5

2|tldr|1

3|Now	that's	a	downtown	job!|

The		id		column	is	marked	as	the		PRIMARY	KEY		(each	table	must	have	a	unique	key),	and		text		column	is	non-null
(NOT	NULL).		SELECT	*	from	reviews		means	"fetch	all	the	values	from	all	the	rows	in	the	reviews	table,"	and	it	prints
the	results	to	the	console.	We	insert	3	rows	of		VALUES		(the	values	are	listed	in	the	order	that	the	columns	are

Background

23

https://redis.io/commands/hmset
https://redis.io/commands/hget

declared	in	the	schema).	The	last	row	is	allowed	to	have	a		null		value	because	the		stars		column	wasn't	declared
with		NOT	NULL	.	And	we	see	in	the	final		SELECT		statement	result	that	there's	nothing	in	the	third	column.	There	are
many	other	statements	and	variations	to	statements.	A	couple	more	common	ones	are		UPDATE		and		DELETE	,	which
alter	and	remove	rows:

sqlite>	UPDATE	reviews	SET	stars	=	4	WHERE	id	=	3;

sqlite>	SELECT	*	FROM	reviews;

1|Breathtaking|5

2|tldr|1

3|Now	that's	a	downtown	job!|4

sqlite>	DELETE	FROM	reviews	WHERE	stars	=	4;

sqlite>	SELECT	*	FROM	reviews;

1|Breathtaking|5

2|tldr|1

Relational	databases	have	relations	between	tables—for	instance	in	the	reviews	table	we	can	have	an		author_id	
column	that	matches	the		id		column	in	the	users	table.	When	a	review	row	has	a	value	of	1	under	its		author_id	
column,	it	means	the	user	row	with	an		id		of	1	authored	the	review.	We	can	tell	SQL	about	this	relation	between	the
tables	by	adding	this	to	the	reviews	table:

FOREIGN	KEY(author_id)	REFERENCES	users(id)

Then	we	can	make	a	query	that	fetches	data	from	both	tables	using	INNER	JOIN:

sqlite>	CREATE	TABLE	users(

			...>			id	INTEGER	PRIMARY	KEY,

			...>			username	TEXT	NOT	NULL

			...>);

sqlite>	DROP	TABLE	reviews;

sqlite>	CREATE	TABLE	reviews(

			...>			id	INTEGER	PRIMARY	KEY,

			...>			text	TEXT	NOT	NULL,

			...>			stars	INTEGER,

			...>			author_id	INTEGER	NOT	NULL,

			...>			FOREIGN	KEY(author_id)	REFERENCES	users(id)

			...>);

sqlite>	INSERT	INTO	users	VALUES(1,	'lorensr');

sqlite>	INSERT	INTO	reviews	VALUES(1,	'Breathtaking',	5,	1);

sqlite>	INSERT	INTO	reviews	VALUES(2,	'tldr',	1,	1);

sqlite>	SELECT	reviews.text,	reviews.stars,	users.username	FROM	reviews	INNER	JOIN	users	ON	reviews.author_id	=

	users.id;

Breathtaking|5|lorensr

tldr|1|lorensr

	Breathtaking|5		is	from	the	reviews	table	while		lorensr		is	from	the	users	table.

While	we	can	send	SQL	statements	as	strings	in	our	code,	we	usually	use	a	library	for	convenience	and	security
(avoiding	SQL	injection).	In	Chapter	11:	SQL	we	use	the	Knex	library,	which	looks	like	this:

this.knex

		.select('*')

		.from('reviews')

SPA
An	SPA	(single-page	application)	is	a	website	that	keeps	the	same	page	loaded	for	the	duration	of	the	user’s	session.
Instead	of	a	traditional	website,	in	which	every	link	or	button	that	is	clicked	causes	an	HTTP	request	to	be	sent	to	the
server	and	a	new	HTML	page	to	be	loaded,	there	is	a	single	HTML	page,	and	JavaScript	changes	the	page	to	show
different	views.	React,	Angular,	and	Vue	are	all	JS	libraries	for	making	SPAs	(often	called	view	libraries).

Background

24

https://en.wikipedia.org/wiki/SQL_injection
https://knexjs.org/
https://en.wikipedia.org/wiki/Single-page_application

SSR
SSR	(server-side	rendering)	is	when,	instead	of	sending	a	small	HTML	file	and	a	JS	bundle	that	we	ask	the	client	to
parse	and	render	into	HTML,	our	server	sends	fully	rendered	HTML	(that	it	created	by	running	the	JS	view	code	on
the	server).	When	that	rendered	HTML	is	able	to	be	cached,	the	client	browser	can	display	the	page	faster	than	a
normal	SPA	(a	normal	SPA	displays	a	blank	or	skeleton	HTML	page,	and	then	JavaScript	constructs	the	view	and
puts	it	on	the	page).	We	also	have	code	from	our	view	library	that,	once	the	browser	loads	the	static	HTML,	attaches
our	app’s	events	handlers	(like		onClick	,		onSubmit	,	etc.)	to	the	page	(through	a	process	called	hydration).

React
React	was	released	by	Facebook	in	2013,	and	it	has	since	steadily	increased	in	popularity,	surpassing	Angular	in
GitHub	stars	in	2016	to	become	the	most	popular	JavaScript	view	library.	(And	while	Vue	passed	React	in	star	count
in	2018,	React	has	5x	the	number	of	npm	downloads.)	React	continues	to	be	developed	by	a	team	at	Facebook,	who
have	merged	in	contributions	from	over	one	thousand	developers.

As	a	view	library,	it	is	responsible	for	what	the	user	sees	on	the	screen.	So	its	job	is	putting	DOM	nodes	on	the	page
and	updating	them.	Different	view	libraries	accomplish	this	in	different	ways	and	provide	different	APIs	for	us—the
developers—to	use.	The	primary	features	of	React	are:

JSX:	JSX	(JavaScript	XML)	is	an	extension	to	JavaScript	that	allows	us	to	write	HTML-like	code,	with	JavaScript
expressions	inside	curly	brackets		{}	.
Components:	Components	are	functions	or	classes	that	receive	arguments	(called	props)	and	return	JSX	to	be
rendered.	They	can	also	be	used	as	HTML	tags	inside	JSX:		<div><MyComponent	/></div>	.
Declarative:	Components	automatically	get	re-run	whenever	their	props	or	state	changes,	and	the	new	JSX	they
return	automatically	updates	the	page.	This	process	is	called	declarative	because	we	declare	what	our	props	and
state	are	as	well	as	what	the	JSX	should	look	like	based	on	those	props	and	state.	This	is	in	contrast	to	an
imperative	view	library	like	jQuery,	in	which	we	would	make	changes	to	the	page	ourselves	(for	example	adding
an				to	a				with		$('ul').append('New	list	item')).
Virtual	DOM:	React	creates	a	model	of	the	page,	and	when	we	return	different	JSX	from	our	components,	React
compares	the	new	JSX	to	the	previous	JSX,	and	uses	the	difference	to	make	the	smallest	possible	changes	to
the	DOM.	This	process	improves	the	rendering	speed.

Latency
Latency	is	the	delay	between	when	one	machine	sends	a	message	over	the	internet	and	when	the	other	machine
receives	it.	It’s	usually	talked	about	in	terms	of	round-trip	time:	the	time	it	takes	for	the	message	to	get	to	the
destination	and	for	a	reply	to	reach	the	source.	The		ping		command-line	tool	displays	round-trip	time	between	our
computer	and	another	machine.	Here	we	see	that	it	takes	around	5	milliseconds	total	for	a	message	to	reach	the
nearest	Google	server	and	for	the	reply	to	arrive	back:

$	ping	google.com

PING	google.com	(172.217.10.142):	56	data	bytes

64	bytes	from	172.217.10.142:	icmp_seq=0	ttl=56	time=3.919	ms

64	bytes	from	172.217.10.142:	icmp_seq=1	ttl=56	time=5.375	ms

64	bytes	from	172.217.10.142:	icmp_seq=2	ttl=56	time=4.930	ms

64	bytes	from	172.217.10.142:	icmp_seq=3	ttl=56	time=5.206	ms

64	bytes	from	172.217.10.142:	icmp_seq=4	ttl=56	time=5.132	ms

^C

---	google.com	ping	statistics	---

5	packets	transmitted,	5	packets	received,	0.0%	packet	loss

round-trip	min/avg/max/stddev	=	3.919/4.912/5.375/0.517	ms

Background

25

It	generally	takes	longer	to	reach	servers	that	are	physically	farther	away.	The	internet	backbone	is	made	of	fiber	optic
cables,	and	the	light	messages	travelling	through	them	has	a	maximum	speed.	It	takes	75	ms	for	a	message	to	go
from	New	York	across	the	Atlantic	Ocean	to	Paris	and	back.	And	the	same	to	cross	the	U.S.	to	San	Francisco	and
back.	164	ms	from	New	York	to	Tokyo,	and	252	ms	from	New	York	to	Shanghai.

These	numbers	will	change	once	Elon	builds	Starlink),	a	network	of	near-Earth	satellites	 .	The	satellites	will
be	so	near	that	the	latency	to	them	from	the	ground	is	7	ms,	and	then	the	satellites	will	communicate	with	each
other	by	light.	Light	travels	faster	in	straight	lines	through	space	than	in	cables	curved	over	the	Earth’s	surface,
so	latency	to	far-off	locations	will	be	reduced!

Why	do	developers	need	to	know	about	latency?	Because	we	never	want	to	keep	our	users	waiting!	If	our	web	server
is	in	New	York,	our	database	is	in	Shanghai,	and	our	user	is	in	San	Francisco,	and	the	request	requires	3	database
requests	in	series,	and	our	server	code	takes	20ms,	then	the	user	won’t	receive	a	response	for	(75	+	252	*	3	+	20)	=
851	ms!	(And	this	is	assuming	the	TCP	connection	is	already	set	up,	which	would	require	another	round	trip	from	the
user	to	the	server,	not	to	mention	the	longer	SSL	handshake	if	it’s	HTTPS.)	Almost	one	second	is	a	long	time	for	our
user,	whose	human	brain	notices	delays	as	short	as	100ms.	This	is	why	we	try	to	locate	our	database	server	in	the
same	data	center	as	our	web	server	(for	example	both	in	Amazon’s		us-east-1).	It’s	why	we	use	a	CDN	to	get	our
files	on	servers	around	the	world,	closer	to	our	users.	It’s	also	why	we	try	to	reduce	the	number	of	sequential	requests
we	need	to	make	between	the	client	and	the	server,	and	why	it’s	so	important	that	we	can	put	all	of	our	queries	in	a
single	GraphQL	request.

CDN
A	CDN,	or	Content	Delivery	Network,	has	servers	around	the	world	that	deliver	our	content	to	users.	Because	their
servers	are	closer	to	our	users	than	our	servers	are,	they	can	respond	faster	than	we	can,	improving	latency.	Here	is
the	way	they	typically	deliver	our	content:

We	tell	our	domain	name	registrar	(where	we	bought	the	domain)	to	set	the	CDN	as	our	DNS	server.
We	have	our	server	set	a		Cache-Control		header	on	our	responses	to	HTTP	requests.	The	header	tells	the	CDN
how	long	to	serve	that	response	to	users.

Then,	when	a	user	makes	a	request,	this	is	what	happens	the	first	time:

The	client	asks	DNS	server:	"Where	is		ourdomain.com/foo	?"
The	DNS	server,	which	is	run	by	our	CDN,	replies:	"It's	at		1.2.3.4	",	which	is	the	IP	address	of	a	nearby	server
run	by	the	CDN.
The	client	connects	to		1.2.3.4		and	makes	the	request,	saying:		GET	ourdomain.com/foo	.
The		1.2.3.4		CDN	server	doesn't	know	what	the		/foo		response	should	be,	so	it	makes	this	request	to	our
server:		GET	ourapp.herokudns.com/foo	.
The		1.2.3.4		CDN	server	forwards	the	response	from	our	server	to	the	client.
If	the	response	from	our	server	had	an	HTTP	header	that	says		Cache-Control:	max-age=60	,	then	the	CDN	caches
it	for	60	seconds.

After	the	CDN	caches	it,	during	the	next	minute,	here	is	what	happens	when	other	users	make	the	same	request:

The	client	asks	DNS	server:	"Where	is		ourdomain.com/foo	?"
The	DNS	server,	which	is	run	by	our	CDN,	replies:	"It's	at		5.6.7.8	",	which	is	the	IP	address	of	a	nearby	server
run	by	the	CDN.
The	client	connects	to		5.6.7.8		and	makes	the	request,	saying:		GET	ourdomain.com/foo	.
The		5.6.7.8		CDN	server	finds	the		/foo		response	in	its	cache,	and	sends	it	to	the	client.

These	subsequent	requests	take	much	less	time	to	complete	than	requests	to	our	server	because:	A)	the	CDN
servers	are	closer,	so	it	takes	less	time	to	reach	them	over	the	internet,	and	B)	the	CDN	servers	have	the	whole
response	ready	to	quickly	return,	whereas	our	server	would	spend	time	constructing	the	response.

Background

26

https://en.wikipedia.org/wiki/Elon_Musk
https://en.wikipedia.org/wiki/Starlink_(satellite_constellation
https://developers.google.com/web/fundamentals/performance/rail
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Webhooks
Webhooks	are	a	system	for	how	one	server	can	notify	another	server	when	something	happens:	some	sites,	including
GitHub,	allow	us	to	provide	them	with	a	URL,	for	instance		https://api.graphql.guide/github-hook	,	to	which	they	make
an	HTTP	request	when	a	certain	event	occurs.	If	we	tell	GitHub	we	want	to	know	about	the		watch		event	on	the	Guide
repo,	then	they	will	send	a	POST	to	our	server	(using	the	given	URL)	whenever	the	repo	is	starred.	The	POST	will
contain	a	JSON	body	with	information	about	the	event,	for	example:

{

		"action":	"started",

		"repository":	{

				"name":	"guide",

				"full_name":	"GraphQLGuide/guide",

				"watchers_count":	9,

				…

		},

		"sender":	{

				"login":	"lorensr",

				"type":	"User",

				"html_url":	"https://github.com/lorensr",

				…

		}

}

Then	our	server	parses	the	JSON	to	figure	out	what	happened.	In	this	case,	the		sender		is	the	user	who	performed
the	action,	and	we	see	under	the		repository		attribute	that	the	repo	now	has	9	watchers.

Testing
Mocking
Types	of	tests

Mocking
First	let’s	go	over	mocking.	Let’s	say	we	have	a	file	with	math	functions:

	math.js	

export	const	add	=	(a,	b)	=>	a	+	b

export	const	multiply	=	(a,	b)	=>	a	*	b

And	our	app,	which	uses	the	math	functions:

	app.js	

import	{	add,	multiply	}	from	'./math'

export	const	addThenMultiply	=	(a,	b,	c)	=>	multiply(add(a,	b),	c)

A	test	for	our	app	might	look	like	this:

	app.test.js	

import	{	addThenMultiply	}	from	'./app'

test('returns	the	correct	result',	()	=>	{

		const	result	=	addThenMultiply(2,	2,	5)

		expect(result).toEqual(20)

Background

27

https://developer.github.com/v3/activity/events/types/#watchevent

})

The	test	calls		addThenMultiply()	,	which	then	calls		add()		and		multiply()	.

But	what	if	we	only	want	to	test	the	logic	inside		addThenMultiply()		and	not	the	logic	inside		add()		and		multiply()	?
Then	we	need	to	mock		add()		and		multiply()	—replace	them	with	mock	functions	that	either	don’t	do	anything,	or
just	return	a	set	number.	We	replace	them	with	mock	functions	that	don’t	do	anything	with		jest.mock()	:

import	{	addThenMultiply	}	from	'./app'

import	*	as	math	from	'./math'

jest.mock('./math.js')

test('calls	add	and	multiply',	()	=>	{

		addThenMultiply(2,	2,	5)

		expect(math.add).toHaveBeenCalled()

		expect(math.multiply).toHaveBeenCalled()

})

	add()		and		multiply()		don’t	return	anything—they	just	track	whether	they’ve	been	called.	So	that’s	what	we	test.	If
we	want	to	also	test	whether	they’re	called	in	the	right	way,	we	can	control	what	they	return():

import	{	addThenMultiply	}	from	'./app'

import	*	as	math	from	'./math'

jest.mock('./math.js',	()	=>	({

		add:	jest.fn(()	=>	4),

		multiply:	jest.fn(()	=>	20)

}))

test('calls	with	the	right	parameters	and	returns	the	result	of	multiply',	()	=>	{

		const	result	=	addThenMultiply(2,	2,	5)

		expect(math.add).toHaveBeenCalledWith(2,	2)

		expect(math.multiply).toHaveBeenCalledWith(4,	5)

		expect(result).toEqual(20)

})

One	danger	of	mocking	too	much	is	that	we	generally	don’t	want	to	test	the	implementation	of	something—just	the
output.	In	this	case,		addThenMultiply()		could	have	been	implemented	differently,	for	instance:

	app.js	

import	{	add	}	from	'./math'

export	const	addThenMultiply	=	(a,	b,	c)	=>	{

		const	multiplicand	=	add(a,	b)

		let	total	=	0

		for	(let	i	=	0;	i	<	c;	i++)	{

				total	=	add(total,	multiplicand)

		}

		return	total

}

Now	even	though	the	function	is	correct,	our	test	would	fail.	An	example	of	testing	the	implementation	for	React
components	would	be	looking	at	state	values	instead	of	just	looking	at	the	output	(what	the	render	function	returns).

Types	of	tests
There	are	three	main	types	of	automated	tests:

Unit:	tests	a	function	(or	more	generally,	a	small	piece	of	code)	and	mocks	any	functions	called	by	that	function.

Background

28

Integration:	tests	a	function	and	the	functions	called	by	that	function,	mocking	as	little	as	possible.	Usually
functions	that	involve	network	requests	are	mocked.
End-to-end	(e2e):	tests	the	whole	running	application.	Usually	refers	to	the	whole	stack—including	frontend
server,	API	server,	and	database—running	as	they	would	in	production,	and	the	tests	click	and	type	in	the	UI.	In
the	context	of	backend,	it	can	mean	just	the	API	server	and	database	are	running,	and	tests	send	HTTP	requests
to	the	API	server.

Should	we	write	tests?	What	kind,	and	how	many?

“Write	tests.	Not	too	many.	Mostly	integration.”	—Guillermo	Rauch

Yes,	we	should	write	tests.	No,	we	don’t	need	them	to	cover	100%	of	our	code.	Most	of	our	tests	should	be	integration
tests.

We	write	tests	so	that	we	can	have	confidence	that	when	write	code,	we’re	not	breaking	things	that	used	to	work.	We
can	cover	most	of	our	code	(or	more	importantly,	our	use	cases)	with	integration	tests.	Why	not	cover	everything	with
unit	tests?	Because	it	would	take	forever	to	write	all	of	them,	and	some	of	them	would	test	implementation,	so
whenever	we	refactored,	we	would	have	to	rewrite	our	tests.	We	can	cover	the	same	amount	of	code	with	fewer
integration	tests,	because	each	test	mocks	fewer	things	and	covers	more	code.	We	don’t	cover	everything	with	e2e
tests	because	they	would	take	forever	to	run—after	clicking	or	submitting	a	form,	the	test	runner	has	to	wait	for	the
animation	to	complete	or	the	network	request	to	finish,	which	in	one	test	might	just	add	up	to	seconds,	but	with	a
whole	test	suite	could	take	minutes.	And	it	would	slow	down	development	if	we	had	to	wait	minutes	to	see	if	the
change	we	just	made	broke	anything.

So	the	first	thing	we	should	do	when	writing	tests	is	create	integration	tests	to	cover	our	important	use	cases.	Then	we
can	look	at	the	code	coverage	and	fill	in	the	holes	with	more	integration	tests	or	with	unit	tests.	How	many	e2e	tests
we	write	depends	on	how	much	of	a	difference	there	is	between	the	integration	and	e2e	environments.	For	full-stack
tests,	there	might	be	a	lot	of	differences	between	the	integration	test	runner	and	an	actual	browser,	so	we	should	at
least	test	the	critical	path	(the	most	important	user	actions,	for	example	in		twitter.com	’s	case,	logging	in,	posting	a
tweet,	and	scrolling	the	feed).	For	backend,	where	the	integration	tests	include	apollo	server’s	request	pipeline,	there’s
not	much	difference	between	integration	and	e2e—in	which	case	we	can	just	do	a	couple	tests	that	make	sure	the
HTTP	server	runs	and	the	connection	to	the	database	works.

Continuous	integration
While	continuous	integration	(CI)	technically	means	merging	to	master	frequently,	in	modern	web	development	it
usually	means	the	process	of	tests	being	run	automatically	on	each	commit.	It’s	often	done	with	a	service	like	CircleCI
that	monitors	our	commits	on	GitHub,	runs	the	tests,	and	provides	a	webpage	for	each	commit	where	we	can	view	the
test	output.	We	can	also	set	it	up	to	do	something	after	the	test,	such	as:

Mark	a	pull	request	as	passing	or	failing	the	tests.
Mark	that	commit	as	passing	or	failing	by	adding	a	red	X	or	green	checkmark	next	to	the	commit	in	the
repository’s	history.
If	successful,	deploy	the	code	to	a	server—for	example	the	staging	or	production	server.

When	the	last	step	is	included,	the	process	may	also	be	called	continuous	delivery	or	continuous	deployment.

Authentication

Tokens	vs.	sessions

Background

29

https://twitter.com/rauchg/status/807626710350839808
https://circleci.com/

There	are	two	main	ways	in	which	a	server	can	verify	that	a	client	is	a	certain	user:	signed	tokens	and	sessions.

A	signed	token	is	piece	of	data	that	is	cryptographically	signed—which	means	we	can	mathematically	verify	who
wrote	the	data.	When	the	data	is	a	user	ID,	for	example		123	,	and	the	signer	is	someone	we	trust	(either	our	server,
or	a	trusted	third-party	server	when	we’re	using	an	authentication	service	like	Auth0),	then	we	can	verify	the	signature
and	know	that	the	client	is	user		123	.	The	most	common	type	of	signed	token	is	a	JWT,	or	JSON	Web	Token.

A	session	is	a	period	of	time	during	which	a	certain	client	is	considered	logged	in	as	a	particular	user.	The	server
stores	data	about	the	session,	for	instance:

{

		sessionId:	'abc',

		userId:	123,

		expiresAt:	1595627896095

}

And	gives	the	client	a	secret:	in	this	case,	the		sessionId	.	Whenever	the	client	contacts	the	server,	the	client	includes
the	secret	so	that	the	server	can	look	up	the	session	data.	For	instance,	if	the	client	sends		'abc'	,	the	server	can	look
up	the	above	record,	and	if	the	session	hasn’t	expired,	the	server	knows	the	client	is	user		123	.

Both	methods	can	contain	additional	information	about	the	user—information	commonly	included	in	order	to	prevent
the	server	from	having	to	take	the	time	to	look	up	the	user	record	from	the	database.	For	example,	we	could	include
authorization	info	like		isAdmin		or	profile	info	like		name		and		email	.

There	are	some	pros	and	cons	to	each	method:

State:	Sessions	are	stateful—the	server	has	to	record	the	session	data	somewhere	(in	Redis,	or	in	memory	with
sticky	sessions),	and	that	introduces	complexity	(and	increased	latency	in	the	case	of	Redis).	Signed	tokens	are
stateless—all	the	information	that	the	server	needs	is	contained	in	the	token.
Invalidation:	When	a	session	secret	is	compromised,	we	can	invalidate	that	session	by	deleting	it	from	the	data
store.	When	a	token	is	compromised,	we	can’t	invalidate	it—it’s	already	been	signed	and	will	continue	to	be	valid
until	the	expiration.	We’d	have	to	add	a	list	of	invalid	tokens—either	in	code	and	re-deploy,	or	in	a	data	store—
and	add	logic	to	check	them.

The	differences	are	small	enough	that	for	most	applications,	we	recommend	using	whichever	method	is	easier	to
build.

localStorage	vs.	cookies
We	can	store	session	secrets	and	signed	tokens	in	either	localStorage	or	cookies,	which	have	different	pros	and	cons:

Size:	Cookies	can’t	be	larger	than	4KB,	and	in	some	cases	we	might	want	to	store	more	data	than	that	in	our
token,	in	which	case	we’d	need	to	use	localStorage.
Flexibility:	Data	you	put	in	localStorage	can	be	managed	by	client-side	JavaScript	and	sent	to	any	domain,
whereas	cookies	can	only	be	set	by	the	server	and	can	only	be	shared	among	subdomains.
XSS:	Cookies	are	set	by	the	server	and	can	be	configured	to	not	be	accessible	from	client-side	JS,	so	they	can’t
be	accessed	by	XSS	attacks.	Data	stored	in	localStorage	is	vulnerable	to	XSS	because	it	can	be	read	by	any	JS
running	on	your	page	(from	any	source	allowed	by	your	CSP).
CSRF:	Cookies	are	vulnerable	to	CSRF	attacks,	whereas	localStorage	is	not.

While	the	XSS	issue	is	a	serious	concern,	a	common	mitigation	is	setting	short	expirations,	and	for	applications
without	strict	security	requirements,	we	again	recommend	using	whichever	method	is	easier	to	set	up.

Browser	performance

Background

30

https://jwt.io/
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Content_Security_Policy
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Users	notice	when	sites	are	slow,	and	they	don’t	like	it	 .	So	if	we	want	our	users	to	feel	good	using	our	site,	we
want	different	things	in	the	browser	to	happen	at	certain	speeds.

First	let’s	go	over	how	the	browser	works.	Because	JavaScript	is	single-threaded,	it	can	only	run	on	a	single	CPU
core.	We	can	have	particular	pieces	of	JS	run	in	Web	Workers,	which	can	run	on	different	cores,	but	most	of	our	JS
runs	on	one	core,	in	the	browser’s	main	thread.	The	browser	also	needs	to	do	most	of	its	page	rendering	(parsing
HTML	and	CSS,	laying	out	elements,	painting	pixels	into	images,	etc)	in	the	main	thread.

Composition,	in	which	the	pixel	images	are	positioned,	happens	on	the	GPU.

A	CPU	core	has	a	limited	speed—it	can	only	do	a	certain	amount	of	work	each	millisecond.	And	because	both	JS	and
rendering	happen	on	the	same	core,	every	millisecond	our	JS	takes	up	is	another	millisecond	the	browser	rendering
has	to	wait	before	it	can	run.	And	the	user	won’t	see	the	page	update	until	the	browser	has	a	chance	to	render.

Now	that	we	know	what’s	going	on,	let’s	think	about	different	situations	the	user	is	in	and	how	fast	our	site	should	be
in	each:

Page	load:	The	faster	the	better,	but	good	targets	are	under	5	seconds	time	to	interactive	(the	page	is	interactive
when	content	has	been	displayed	and	the	page	is	interactable—it	can	be	scrolled,	things	can	be	clicked	on,	etc.)
for	the	first	visit	and	under	2	seconds	for	subsequent	visits.
Response:	When	humans	take	an	action	like	clicking	a	button,	and	the	page	changes	within	100	milliseconds,
they	generally	perceive	the	response	as	immediate.	If	the	response	takes	over	100ms,	humans	perceive	a	delay.
If	our	click	event	handler	runs	code	that	takes	100ms	on	slow	devices,	then	we	want	to	break	the	code	into	two
pieces:	the	minimum	amount	that	will	trigger	the	desired	UI	change,	and	the	rest.	And	we	schedule	the	rest	to	be
done	later:

button.onclick	=	()	=>	{

		updateUI()

		window.requestIdleCallback(doTheRest)

}

or	in	React:

class	Foo	extends	Component	{

		onClick	=	()	=>	{

				this.setState({	something:	'different'	})

				window.requestIdleCallback(this.doTheRest)

		}

}

requestIdleCallback()	runs	the	given	function	when	the	browser	is	idle,	after	it	has	finished	rendering	the	changes
triggered	by		updateUI()	/	this.setState()	.

Animation:	Humans	perceive	a	motion	as	smooth	at	60	fps—when	60	frames	are	rendered	per	second.	If	we
take	1000	milliseconds	and	divide	by	60,	we	get	16.	So	while	something	is	moving	on	the	page,	we	want	the
browser	to	be	able	to	render	every	16ms.	The	browser	needs	6ms	to	paint,	which	gives	us	10ms	left	to	run	JS	in.
“Something	moving”	includes	visual	animations	like	entrances/exits	and	loading	indicators,	scrolling,	and
dragging.

Background

31

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Window/requestIdleCallback

Chapter	1:	Understanding	GraphQL	Through	REST
Chapter	1	is	a	basic	introduction	to	GraphQL	through	the	eyes	of	the	technology	it’s	replacing,	REST.	If	you’re
already	sold	on	GraphQL	and	familiar	with	the	basics,	feel	free	to	skip	ahead	to	Chapter	2:	Query	Language	for
theory	or	Chapter	5:	Client	Dev	and	Chapter	11:	Server	Dev	for	coding.

Chapter	contents:

Introduction
GraphQL	as	an	alternative	to	a	REST	API
A	simple	REST	API	server
A	simple	GraphQL	server
Querying	a	set	of	data
Filtering	the	data
Async	data	loading
Multiple	types	of	data
Security	&	error	handling
Tying	this	all	together

Introduction
GraphQL	is	a	modern,	flexible	specification	for	querying	and	modifying	data	that	is	on	track	to	eclipse	REST	as	a	best
practice	for	API	design.	You	can	write	a	single	elegant	query	for	all	the	data	you	need—no	more	cobbling	together
responses	from	a	handful	of	REST	endpoints.

When	describing	GraphQL,	it’s	easier	to	start	by	saying	what	it	isn’t.	It	isn’t	a	database—nothing	is	stored	in	it.	It	has
little	to	do	with	graphs.	While	it	is	especially	popular	in	the	Node.js	and	React/Redux	communities,	GraphQL	is	a
specification,	which	means	it	can	be	used	in	any	language	or	framework.	GraphQL	is	a	query	language	(hence	the
“QL”)—it’s	an	abstraction	for	querying	and	modifying	data,	and	it’s	typically	used	by	the	client	to	fetch	data	from	the
server.	It’s	an	explicit,	type-safe,	and	flexible	alternative	to	traditional	JSON	REST	APIs.

Why	use	GraphQL?	It	turns	out	that	GraphQL	is	amazingly	useful—it	combines	a	number	of	features	that	have
existed	in	well-designed	REST	APIs	and	presents	them	as	a	single,	easy-to-understand	package:

Flexible,	explicit	queries:	GraphQL	puts	the	consumer	of	the	API	in	full	control	over	what	data	they	receive.
Instead	of	a	REST	endpoint	that	returns	all	the	properties	you	could	possibly	want	(and	often	links	to	more),	you
only	get	the	properties	you	ask	for.
Type-safe,	self-documenting	API:	GraphQL	APIs	are	type-safe	and	self-documenting:	the	schema	you	define	is
exposed	as	interactive	documentation	for	private	or	public	consumption.
No	more	API	endpoint	sprawl:	Backend	engineers	also	love	GraphQL.	Once	you	write	the	code	for	accessing	a
data	type,	you	won’t	have	to	re-implement	it.	You	don’t	have	to	make	a	new	endpoint	for	each	view—you	can
leave	that	work	up	to	the	client	and	the	GraphQL	execution	model,	which	is	implemented	by	your	GraphQL	server
library.	And	you	don’t	have	to	make	a	new	API	for	each	new	app—you	can	have	a	single	GraphQL	API	that
covers	all	your	business	data.
Query	consolidation:	A	request	for	multiple	data	types	can	be	combined	into	a	single	query	that	is	executed	in
parallel	on	the	server.
Static	query	analysis:	GraphQL	schemas	allow	you	to	statically	analyze	the	queries	in	your	codebase,	and	they
guarantee	that	you’ll	never	break	them.

Chapter	1:	Understanding	GraphQL	Through	REST

32

All	together	you	end	up	with	an	API	that	is	a	delight	to	use	and	allows	you	to	write	expressive	queries	with
understandable	results:

A	GraphQL	query	(left)	and	the	results	from	the	server	(right)	inside	the	GraphiQL	(with	an	“i”	and	pronounced
“graphical”)	web	interface,	an	easy-to-use	IDE	for	developing	GraphQL	queries.

By	reading	this	book,	you’ll	learn	why	you	should	use	GraphQL	in	production	and	how	to	do	it,	and	some	best
practices	and	common	pitfalls.	To	start,	we’ll	dip	our	toes	in	the	water:	we’ll	see	the	power	of	GraphQL	through
examples	and	answer	the	most	obvious	questions.	Then	we’ll	dive	deep	into	the	intricacies	of	how	this	system	was
designed.

GraphQL	as	an	alternative	to	a	REST	API
This	chapter	examines	how	to	build	a	fully-functional	API	using	REST	techniques	and	how	that	compares	to	building
an	equivalent	API	using	GraphQL.

A	basic	REST	API	(where	we	perform	a	HTTP	GET	request	to	a	particular	URL	and	get	back	some	JSON	data)	is	one
of	the	simplest	API	designs	in	existence.	The	complications	appear	when	we	want	to	have	greater	control	over	the
results	returned	from	the	server.	This	is	where	GraphQL’s	abilities	really	shine.

While	a	GraphQL	API	starts	out	more	complex	than	a	REST	API,	its	complexity	doesn’t	increase	as	quickly	because
GraphQL	implementations	implicitly	handle	many	of	the	challenging	aspects	of	API	design.	Once	we	understand	the
basics	of	GraphQL,	we	understand	enough	to	do	pretty	much	anything	we	want,	which	is	an	exciting	proposition.	On
the	other	hand,	while	a	REST	API	starts	off	simple,	it	quickly	ratchets	up	in	complexity	to	levels	that	can	be
challenging	to	maintain,	as	we’ll	see	later	in	this	chapter.

GraphQL’s	developers	have	taken	all	the	best	practices	of	an	excellently	designed	REST	API	and	built	them	into	a
single	system.	It	may	seem	like	there	is	a	lot	of	abstraction	to	it,	but	that	abstraction	guides	us	toward	practices	that
will	make	our	APIs	better	designed	and	more	consistent.

Going	through	building	a	REST	API	may	seem	like	unnecessary	work,	but	if	we	look	at	GraphQL	as	a	REST	API
taken	to	its	logical	conclusion	(a	REST	API	with	all	the	bells	and	whistles	included),	then	a	lot	of	the	decisions	that
were	made	in	designing	GraphQL	make	a	lot	of	sense.	GraphQL	is	truly	the	best	version	of	a	REST	API.

We	recommend	following	along	with	the	code,	which	can	be	found	on	GitHub.

A	simple	REST	API	server
Background:	Node,	MongoDB,	HTTP,	JSON

Chapter	1:	Understanding	GraphQL	Through	REST

33

https://github.com/GraphQLGuide/graphql-rest-api-demo

We’ll	start	our	process	of	understanding	GraphQL	by	building	a	simple	REST	API	using	Node.js	and	the	popular
Express	web	framework.	We’ll	be	retrieving	data	from	a	MongoDB	database	and	using	Mongoose	as	our	object-
relational	mapping	(ORM)	to	simplify	querying	the	data	we	have	stored.

Learn	about	MongoDB,	the	Node	driver,	and	Mongoose	in	Background	>	MongoDB.

In	this	application,	our	server	will	listen	for	requests	to	the		/users/:id		URL.	We	use	the	ID	passed	as	a	parameter	in
the	URL	(as	specified	by	the		:id)	to	query	a	user	record	from	the	database	and	return	it	as	a	JSON	string.	If	we
encounter	any	errors,	we	return	a	500	error,	and	if	we	can’t	find	the	user,	we	return	a	404—all	standard	REST
practices.

	rest-server.js	:

const	express	=	require('express')

const	server	=	express()

//	Get	the	Mongoose	models	used	for	querying	the	database

const	{	User	}	=	require('./models.js')

//	Listen	for	all	GET	requests	to	/users/:id	URL	(where	the

//	ID	is	the	ID	of	the	user	account)

server.get('/users/:id',	(req,	res)	=>	{

		//	Try	to	find	the	user	by	their	id	(_id	field),	using	the	ID

		//	parameter	from	the	URL.

		User.findById(req.params.id,	(err,	user)	=>	{

				if	(err)	{

						//	The	DB	returned	an	error	so	we	return	a	500	error

						return	res.status(500).end()

				}

				if	(!user)	{

						//	No	user	was	found	so	we	return	a	404	error

						return	res.status(404).end()

				}

				//	Return	the	user	to	the	client	(automatically	serialized

				//	as	a	JSON	string)

				res.send(user)

		})

})

//	Start	the	application,	listening	on	port	3000

server.listen(3000)

The	Mongoose	data	models	are	stored	in	a	separate	file:

	models.js	

const	mongoose	=	require('mongoose')

//	Connect	to	the	local	MongoDB	database	named	"testdb"

mongoose.connect('mongodb://localhost/testdb')

//	Create	a	User	schema	to	be	stored	in	the	MongoDB	database

const	UserSchema	=	new	mongoose.Schema({

		_id:	String,

		username:	String

})

//	Turn	that	schema	into	a	model	that	we	can	query

const	User	=	mongoose.model('User',	UserSchema)

module.exports	=	{	User	}

Chapter	1:	Understanding	GraphQL	Through	REST

34

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/rest-server.js
https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/models.js

We	connect	to	the	database	and	implement	a	schema	for	the	User	that	has	two	fields,		_id		(the	default	ID	field	for
MongoDB)	and		username	,	and	we	turn	that	schema	into	a	model	that	lets	Mongoose	know	that	users	should	be
stored	in	the		users		collection	(it	takes	the	given	model	name		'User'		and	lowercases	and	pluralizes).

We’ll	need	to	have	some	data	in	our	database	to	start,	so	we’ll	insert	a	couple	of	simple	documents	with	string		_id	
and		username		fields,	looking	something	like	this	(in	MongoDB	Compass,	a	desktop	graphical	interface	for	running
MongoDB	queries	against	a	database):

The	two	records	stored	in	the	“users”	collection	of	the	MongoDB	database.

To	query	this	endpoint	would	be	quite	simple—we	can	run		curl		from	the	command	line	to	verify	that	the	endpoint’s
response	matches	our	expectations:

$	curl	http://localhost:3000/users/123

{"_id":"123","username":"jeresig"}

$	curl	-I	http://localhost:3000/users/abc

HTTP/1.1	404	Not	Found

X-Powered-By:	Express

Date:	Sat,	02	Dec	2017	19:11:52	GMT

Connection:	keep-alive

Querying	for	a	user	by	their	ID	returns	the	expected	JSON	object,	and	if	we	try	to	find	a	user	that’s	not	in	the
database,	we	get	the	expected	404	error.	Perfect!

A	simple	GraphQL	server
What	does	our	REST	server	look	like	in	the	world	of	GraphQL?	GraphQL	has	the	concept	of	a	schema—it’s	similar	to
those	in	Mongoose	and	other	data	model	libraries,	but	a	GraphQL	schema	is	used	differently.	In	Mongoose	the
schema	is	a	representation	of	the	data	that’s	stored	in	the	MongoDB	database,	but	that’s	not	necessarily	the	case	for
a	GraphQL	schema.	A	GraphQL	schema	doesn’t	need	to	match	the	storage	format	and	can	represent	data	from	more
than	one	source.	To	represent	our	basic	User:

type	User	{

		_id:	String

		username:	String

}

This	tells	GraphQL	that	we	have	a	type	named		User		with	two	fields:		_id		and		username	,	both	strings.	This	alone
doesn’t	really	do	anything,	though.	GraphQL	doesn’t	know	how	to	fetch	this	data	or	what	interface(s)	to	set	up	for	the
client	to	query.	We’ll	write	a	function	for	the	former	in	a	bit,	and	we	can	do	the	latter—define	a	simple	query	interface
—using	the	same	schema	syntax	as	above:

Chapter	1:	Understanding	GraphQL	Through	REST

35

https://www.mongodb.com/products/compass

type	Query	{

		user(id:	String!):	User

}

In	this	case,	we’re	saying	that	we	want	a	single	query	field	(named		user)	that	accepts	a	single	argument	(a	required
string	named		id)	and	returns	a		User		type.	This	tells	GraphQL	how	we	want	the	client	to	be	able	to	interact	with	the
data,	but	GraphQL	still	doesn’t	know	how	to	actually	get	that	data	out	of	our	database.	Thankfully,	we	can	make	good
use	of	the	Mongoose	models	that	we	built	before.	GraphQL	just	needs	to	know	what	to	do	when	the	client	sends	a
	user(id)		query.	The	Node.js	GraphQL	implementation	makes	smart	use	of	Promises—we	only	need	to	return	a
Promise	that	resolves	to	a	User,	like	this:

function	user({	id	})	{

		return	User.findById(id)

}

Putting	it	all	together,	we	end	up	with	a	full	GraphQL	server:

	graphql-server.js	

const	graphqlHTTP	=	require('express-graphql')

const	{	buildSchema	}	=	require('graphql')

const	express	=	require('express')

const	server	=	express()

//	Get	the	Mongoose	models	used	for	querying	the	database

const	{	User	}	=	require('./models.js')

//	Start	up	a	GraphQL	endpoint	listening	at	/graphql

server.use(

		'/graphql',

		graphqlHTTP({

				//	We	construct	our	GraphQL	schema	which	has	two	types:

				//	The	User	type	and	the	Query	type	(through	which	all

				//	queries	for	data	are	defined)

				schema:	buildSchema(`

								type	User	{

												_id:	String

												username:	String

								}

								type	Query	{

												user(id:	String!):	User

								}

				`),

				//	The	methods	that	we'll	use	to	get	the	data	for	our

				//	main	queries

				rootValue:	{

						//	Get	a	user	based	on	the	ID	and	return	it	as	a	Promise

						user({	id	})	{

								return	User.findById(id)

						}

				},

				//	Display	the	GraphiQL	web	interface	(for	easy	usage!)

				graphiql:	true

		})

)

//	Start	the	application,	listening	on	port	3000

server.listen(3000)

As	before,	this	program	creates	an	Express	server,	but	instead	of	making	a		'/users/:id'		endpoint,	it	sets	up	an
endpoint	at		'/graphql'		that,	using	the	schema	we	provide,	allows	clients	to	make	the		user(id)		query.

We	can	see	now	how	an	API	consumer	makes	their	query:

query	{

Chapter	1:	Understanding	GraphQL	Through	REST

36

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/graphql-server.js

		user(id:	"123")	{

				_id

				username

		}

}

In	addition	to	having	a	custom	language	for	specifying	the	schema,	GraphQL	also	has	a	language	for	specifying
queries.	This	is	more	verbose	than	a	REST	API:	with	REST,	the	query	is	embedded	in	the	URL	itself;	in	GraphQL,	we
specify	the	endpoint	that	we’re	calling	(user)	along	with	the	argument	(id		with	a	value	of		"123"),	and	we	also	list
every		User		field	we	want	the	server	to	return.	This	extra	syntax	is	what	makes	GraphQL	so	flexible	and	explicit:	it
gives	us	an	exact	list	of	the	data	we	are	attempting	to	fetch.

We	have	a	couple	of	options	if	we	want	to	run	this	query	and	get	the	data	back	from	the	server.	To	start,	let’s	use	the
command	line	to	show	how	a	typical	query	might	be	executed:

$	curl	-X	POST	-H	"Content-Type:application/json"	\

>					-d	'{"query":	"{user(id:	\"123\"){_id	username}}"}'	\`

>					http://localhost:3000/graphql

{"data":{"user":{"_id":"123","username":"jeresig"}}}

We’re	submitting	our	query	as	a	POST	request	to	the	GraphQL	endpoint	and	getting	back	a	JSON	response,	like	with
the	REST	API.	The	response	format	is	a	bit	different—our	data	is	returned	inside	the		"data"		property,	and	the
structure	of	the	data	matches	our	GraphQL	query.

What	happens	when	we	attempt	to	query	for	a	user	that	doesn’t	exist?	Does	it	return	a	404	like	with	a	REST	API?

$	curl	-X	POST	-H	"Content-Type:application/json"	\

>					-d	'{"query":	"{user(id:	\"123\"){_id	username}}"}'	\

>					http://localhost:3000/graphql

{"data":{"user":null}}

No,	in	fact!	Every	time	we	query	a	GraphQL	endpoint,	we	get	a	valid	JSON	response.	In	this	case		"user"		is		null	,
as	its	value	wasn’t	able	to	be	determined.	This	becomes	very	useful	when	we	handle	permissions	and	errors,	which
we’ll	get	into	later.

When	we	run	our	server	(node	graphql-server.js)	and	visit	localhost:3000/graphql	in	the	browser,	we	see	GraphiQL::

The	results	returned	from	a	query	inside	the	GraphiQL	web	interface.

You	can	also	try	out	a	hosted	version	here:	ch1.graphql.guide/graphql

Seeing	or	using	GraphiQL	for	the	first	time	is	often	the	moment	that	software	engineers	become	GraphQL	converts.	It
offers	an	an	intuitive	interface	to	read	the	documentation	for	and	query	a	GraphQL	schema.	We	can	write	a	query,	see
the	results	returned	from	the	server,	and	explore	the	documentation	on	the	right	that’s	been	automatically	generated

Chapter	1:	Understanding	GraphQL	Through	REST

37

http://localhost:3000/graphql
https://ch1.graphql.guide/graphql

from	the	schema.	This	is	something	that	REST	can’t	replicate	without	a	ton	of	extra	work	or	an	additional	framework.
GraphQL	is	only	just	starting	to	pay	off,	though—as	the	REST	API	becomes	more	and	more	complex,	the	complexity
of	the	equivalent	GraphQL	API	remains	the	same.

Querying	a	set	of	data
If	we	want	to	expand	our	REST	API	to	allow	for	querying	all	of	the	users	in	our	database,	we	need	to	add	a	new
endpoint:

	rest-server.js	:

//	Listen	for	all	GET	requests	to	/users

server.get('/users',	(req,	res)	=>	{

		//	Find	all	of	the	users	in	the	database	collection	(we	pass	in

		//	an	empty	collection	as	we	aren't	filtering	the	results)

		User.find({},	(err,	users)	=>	{

				if	(err)	{

						//	The	DB	returned	an	error	so	we	return	a	500	error

						return	res.status(500).end()

				}

				//	Return	the	array	of	users	to	the	client	(automatically

				//	serialized	as	a	JSON	string)

				res.send(users)

		})

})

Like	before,	we	can	do	a	GET	request	to	the	new		/users		endpoint	to	see	the	user	data	returned	as	an	array	of
objects:

$	curl	http://localhost:3000/users

[{"_id":"123","username":"jeresig"},{"_id":"456","username":"lorensr"}]

With	our	GraphQL	endpoint,	we	can	achieve	a	similar	result	by	adding	a		users		query	to	our	schema:

type	Query	{

		user(id:	String!):	User

		users:	[User]

}

And	by	adding	an	associated	loader	for	that	data,	which	is	just	a	single	function:

	graphql-server.js	

//	The	query	fields	that	we'll	use	to	get	the	data	for	our

//	main	queries

rootValue:	{

		user({	id	})	{	…	},

		//	Get	an	array	of	users	and	return	them	as	a	Promise

		users()	{

				return	User.find({})

		}

},

And	that’s	all	we	need!	The	query	syntax	changes	ever	so	slightly	to	make	this	new		users		query,	but	the	rest	of	it
stays	intact.	We	still	ask	for	the	fields	on	the		User		type	that	we	want,	but	we	do	so	with	the	same	syntax,	even
though	we’re	operating	against	a	set	of	users	(rather	than	a	single	object).	The	query:

query	{

		users	{

Chapter	1:	Understanding	GraphQL	Through	REST

38

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/rest-server.js
https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/graphql-server.js

				_id

				username

		}

}

This	is	one	of	the	beauties	of	GraphQL:	it’s	designed	to	scale	easily	from	a	single	object	to	multiple	with	little	change
in	our	code.	The	result	is	as	we	would	expect—it’s	just	an	array	of	user	objects	on	the		"users"		attribute.

{"data":{"users":[{"_id":"123","username":"jeresig"},{"_id":"456","username":"lorensr"}]}}

Now	that	we	have	the	basics	out	of	the	way,	let’s	look	at	some	of	the	advanced	features	of	REST	APIs	that	GraphQL
makes	trivial.

Filtering	the	data
In	most	REST	APIs	we	are	implicitly	asking	the	endpoint	to	return	all	data,	completely	unfiltered.	This	could	result	in	a
potentially	large	request	being	sent	back	to	the	user	along	with	a	number	of	time-	or	resource-intensive	sub-queries
being	executed	to	load	particular	fields	or	child	data.	All	together	that	means	a	slow	response	time,	especially	on
mobile.	Many	large	REST	APIs	will	end	up	adding	a	process	for	filtering	the	fields	returned.	For	example,	if	we	pass	in
a	query	string	to	our	REST	API	that	was	something	like		?fields=username		then	we’d	expect	that	the	returned	object(s)
would	only	include	the		username		field.	We	can	achieve	this	by	writing	a	function	to	filter	the	fields:

	rest-server.js	

//	Filter	a	user	object	based	on	the	requested	fields

const	filterFields	=	(req,	user)	=>	{

		const	{	fields	}	=	req.query

		//	If	no	fields	were	specified	we	return	all	of	them

		if	(!fields)	{

				return	user

		}

		//	Otherwise	we	assume	the	fields	are	a	comma-separated

		//	list	of	field	names,	and	we	generate	a	new	object	that

		//	contains	only	those	fields.

		const	filteredUser	=	{}

		for	(const	field	of	fields.split(','))	{

				filteredUser[field]	=	user[field]

		}

		return	filteredUser

}

And	then	we	need	to	ensure	that	every	time	we	send	a	user	object,	we	filter	it	to	only	contain	the	fields	requested	by
the	client.	Note	the	altered		res.send()		lines	at	the	end	of	each	endpoint’s	handler	function:

//	Listen	for	all	GET	requests	to	/users/:id	URL	(where	the

//	ID	is	the	ID	of	the	user	account)

server.get('/users/:id',	(req,	res)	=>	{

		//	Try	to	find	the	user	by	their	id	(_id	field),	using	the	ID

		//	parameter	from	the	URL.

		User.findById(req.params.id,	(err,	user)	=>	{

				if	(err)	{

						//	The	DB	returned	an	error	so	we	return	a	500	error

						return	res.status(500).end()

				}

				if	(!user)	{

						//	No	user	was	found	so	we	return	a	404	error

						return	res.status(404).end()

				}

Chapter	1:	Understanding	GraphQL	Through	REST

39

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/rest-server.js

				//	Return	the	user	to	the	client	(automatically	serialized

				//	as	a	JSON	string)

				res.send(filterFields(req,	user))

		})

})

//	Listen	for	all	GET	requests	to	/users

server.get('/users',	(req,	res)	=>	{

		//	Find	all	of	the	users	in	the	database	collection	(we	pass	in

		//	an	empty	collection	as	we	aren't	filtering	the	results)

		User.find({},	(err,	users)	=>	{

				if	(err)	{

						//	The	DB	returned	an	error	so	we	return	a	500	error

						return	res.status(500).end()

				}

				//	Return	the	array	of	users	to	the	client	(automatically

				//	serialized	as	a	JSON	string)

				res.send(users.map(user	=>	filterFields(req,	user)))

		})

})

We	can	test	to	ensure	it’s	working	when	querying	a	single	user:

$	curl	http://localhost:3000/users/123

{"_id":"123","username":"jeresig"}

$	curl	http://localhost:3000/users/123?fields=username

{"username":"jeresig"}

$	curl	http://localhost:3000/users/123?fields=_id,username

{"_id":"123","username":"jeresig"}

And	also	when	querying	all	users:

$	curl	http://localhost:3000/users

[{"_id":"123","username":"jeresig"},{"_id":"456","username":"lorensr"}]

$	curl	http://localhost:3000/users?fields=username

[{"username":"jeresig"},{"username":"lorensr"}]

$	curl	http://localhost:3000/users?fields=_id,username

[{"_id":"123","username":"jeresig"},{"_id":"456","username":"lorensr"}]

With	GraphQL,	filtering	is	available	by	default.	Remember	how	we	had	to	specify	which	user	fields	we	wished
returned?	GraphQL	effectively	requires	that	we	specify	a	“fields”	filter	for	every	object.	If	we	wanted	to	just	fetch	the
	username		fields	with	GraphQL,	the	query	would	look	like	this:

query	{

		users	{

				username

		}

}

And	the	response	would	only	include	the	fields	that	were	specified:

{"data":{"users":[{"username":"jeresig"},{"username":"lorensr"}]}}

Our	field-filtering	example	is	trivial:	an	object	without	any	child	objects.	What	would	happen	if	the	user	object	had	a
child	object	that	also	had	fields	we	wished	to	include	or	exclude?	What	if	some	excluded	fields	took	extra	time	to	fetch
from	the	database,	and	instead	of	just	filtering	them	out,	we	wanted	to	avoid	fetching	them	in	the	first	place?	The
implementation	of	these	things	in	the	REST	API	sounds	quite	intimidating,	so	we’ll	leave	that	as	an	exercise	to	the
reader	 .	With	GraphQL,	it’s	just	a	matter	of	specifying	the	fields	we	wish	to	include	in	our	query.	Having	a	standard

Chapter	1:	Understanding	GraphQL	Through	REST

40

method	of	field	specification	means	that	it’s	easier	for	the	server	to	avoid	loading	or	querying	unnecessary	data	from
the	database,	and	we	can	track	precisely	which	fields	are	being	used	and	which	aren’t.	This	is	exciting,	as	we	can	use
the	field	usage	information	to	improve	our	database	or	help	with	migrating	to	a	new	schema.	All	of	these	benefits	will
be	discussed	in	depth	in	this	book.

Async	data	loading
The	data-loading	code	we’ve	written	so	far	has	a	simplistic	structure:	all	of	the	data	is	held	directly	by	the	model.
That’s	easy	to	manage	in	a	REST	API,	but	it	gets	harder	when	we	want	to	return	subobjects.	For	example,	if	each
user	were	in	a	group,	and	we	wanted	that	group’s	object	to	be	returned	along	with	the	user,	the	code	would	become
much	more	complex.	Let’s	see	what	that	would	look	like.

We	need	to	update	the		users		collection	with	a	new		groupId		field:

The	updated	user	models	with	a	new		groupId		field	in	the	MongoDB	database.

	groupId		refers	to	a	group	in	the		groups		collection.	A	group	has		_id		and		name		fields:

The	new	group	models	in	the	MongoDB	database.

We’d	like	to	have	the	group	object	available	as	a	property	on	the	User	model	instead	of	the		groupId	:

$	curl	http://localhost:3000/users/123

{"_id":"123","username":"jeresig","group":{"_id":"dev","name":"Developers"}}

Our	first	coding	step	is	creating	a	Group	model	(which	we’ll	use	for	both	the	REST	and	GraphQL	implementations)	to
hold	the	Group	details,	and	then	we’ll	add	a	method	to	the	User	model	for	retrieving	its	associated	Group	(returning	a
Promise	that	resolves	to	that	group).

	models.js	:

//	Create	a	Group	schema	to	be	stored	in	the	MongoDB	database

const	GroupSchema	=	new	mongoose.Schema({

		_id:	String,

		name:	String

})

//	Turn	that	schema	into	a	model	that	we	can	query

const	Group	=	mongoose.model('Group',	GroupSchema)

//	Create	a	User	schema	to	be	stored	in	the	MongoDB	database

Chapter	1:	Understanding	GraphQL	Through	REST

41

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/models.js

const	UserSchema	=	new	mongoose.Schema({

		_id:	String,

		username:	String,

		groupId:	String

})

//	Retrieve	the	group	associated	with	the	user

UserSchema.methods.group	=	function()	{

		//	Use	.exec()	to	ensure	a	true	Promise	is	returned

		return	Group.findById(this.groupId).exec()

}

//	Turn	that	schema	into	a	model	that	we	can	query

const	User	=	mongoose.model('User',	UserSchema)

module.exports	=	{	User,	Group	}

We	don’t	want	to	ever	return	the		groupId		field—instead	we	just	want	to	return	the	group	object	(which	can	only	be
obtained	by	resolving	the	Promise	returned	from	the		.group()		method).	We’ll	need	to	update	our	application	code	in
a	number	of	ways	to	handle	all	of	this	asynchronous	data	loading.	To	start,	we	can	update		filterFields()		to	work
asynchronously	and	resolve	the	Promises	if	they	exist:

	rest-server.js	

//	A	list	of	the	fields	that	are	allowed	to	be	accessed

const	defaultFields	=	['_id',	'username',	'group']

//	Filter	a	user	object	based	on	the	requested	fields

const	filterFields	=	async	function(req,	user)	{

		//	We	assume	the	fields	are	a	comma-separated	list	of	field

		//	names,	if	none	is	specified	then	we	return	all	fields.

		const	fieldKeys	=	req.query.fields

				?	req.query.fields.split(',')

				:	defaultFields

		//	Generate	a	new	object	that	contains	only	those	fields.

		const	filteredUser	=	{}

		for	(const	field	of	fieldKeys)	{

				//	If	the	field	is	a	function	then	we	expect	it	to	return

				//	a	Promise	which	we	will	immediately	resolve.

				if	(typeof	user[field]	===	'function')	{

						filteredUser[field]	=	await	user[field]()

				}	else	{

						filteredUser[field]	=	user[field]

				}

		}

		return	filteredUser

}

We	have	to	add	a	list	of		defaultFields	,	as	we	want	to	ensure	that		group		is	included	and		groupId		is	excluded.	Now
we	can	use	our	new	asynchronous	function	in	our	API	endpoints.	For	the	first,	we	just	make	the		findById		callback
	async		and		await	filterFields()		before	sending	the	response.	For	the	second,	we	have	to	use		Promise.all()	:

//	Listen	for	all	GET	requests	to	/users/:id	URL	(where	the

//	ID	is	the	ID	of	the	user	account)

server.get('/users/:id',	(req,	res)	=>	{

				//	Try	to	find	the	user	by	their	id	(_id	field),	using	the	ID

				//	parameter	from	the	URL.

				User.findById(req.params.id,	async	(err,	user)	=>	{

								if	(err)	{

												//	The	DB	returned	an	error	so	we	return	a	500	error

												return	res.status(500).end()

								}

								if	(!user)	{

												//	No	user	was	found	so	we	return	a	404	error

												return	res.status(404).end()

								}

Chapter	1:	Understanding	GraphQL	Through	REST

42

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/rest-server.js

								//	Return	the	user	to	the	client	(automatically	serialized

								//	as	a	JSON	string).	We	need	to	wait	for	all	of	the	fields

								//	to	load	before	we	can	return	the	results.

								res.send(await	filterFields(req,	user))

				})

})

//	Listen	for	all	GET	requests	to	/users

server.get('/users',	(req,	res)	=>	{

		//	Find	all	of	the	users	in	the	database	collection	(we	pass	in

		//	an	empty	collection	as	we	aren't	filtering	the	results)

		User.find({},	async	(err,	users)	=>	{

				if	(err)	{

						//	The	DB	returned	an	error	so	we	return	a	500	error

						return	res.status(500).end()

				}

				//	Return	the	array	of	users	to	the	client	(automatically

				//	serialized	as	a	JSON	string)	We	need	to	wait	for	all

				//	of	the	Promises	to	resolve	for	all	of	the	users.

				res.send(await	Promise.all(users.map(user	=>	filterFields(req,	user))))

		})

})

This	solution	works	exactly	as	we	expect	it	to,	returning	a	group	object	along	with	the	other	fields:

$	curl	http://localhost:3000/users/123

{"_id":"123","username":"jeresig","group":{"_id":"dev","name":"Developers"}}

$	curl	http://localhost:3000/users/123?fields=username,group

{"username":"jeresig","group":{"_id":"dev","name":"Developers"}}

$	curl	http://localhost:3000/users

[{"_id":"123","username":"jeresig","group":{"_id":"dev","name":"Developers"}},{"_id":"456","username":"lorensr"

,"group":{"_id":"author","name":"Authors"}}]

$	curl	http://localhost:3000/users?fields=username,group

[{"username":"jeresig","group":{"_id":"dev","name":"Developers"},{"username":"lorensr","group":{"_id":"author",

"name":"Authors"}}]

The	code	has	become	harder	to	follow	and	understand—there’s	no	longer	a	clean	one-to-one	relationship	between
the	data	on	the	model	and	what	we	want	to	return,	and	handling	asynchronous	functions	ramped	up	the	complexity.

Let’s	compare	this	solution	with	how	it	would	work	in	GraphQL.	We	already	have	the	changes	to	the	Mongoose
models,	so	we	start	out	by	updating	the	GraphQL	schema	to	represent	the	new	Group	type:

type	Group	{

		_id:	String

		name:	String

}

type	User	{

		_id:	String

		username:	String

		group:	Group

}

And…	that’s	it.	That’s	all	the	work	that	we	need	to	do	(beyond	the	minor	changes	that	were	made	to	the	Mongoose
models).	We	can	open	GraphiQL	to	try	out	our	new	field	and	see	that	it	works	immediately:

Chapter	1:	Understanding	GraphQL	Through	REST

43

The	results	for	all	users	and	their	groups	inside	the	GraphiQL	web	interface.

GraphQL	automatically	handles	values	that	are	returned	as	Promises.	The	GraphQL	server	attempted	to	resolve	the
	group		field	by	executing	the	User	model’s		.group		method	and	waiting	until	the	Promise	resolved	before	including
the	value.

Notice	that	because	GraphQL	requires	filtering	fields	by	specifying	their	names,	we	also	have	field	filtering	on	the
group	submodel.	We	don’t	have	this	in	our	REST	API	implementation.

It’s	also	important	to	note	that	GraphQL	follows	a	best	practice:	it	doesn’t	query	for	any	data	that	it	doesn’t	need.	If	the
user	never	explicitly	requests	the		group		field,	then	the	server	won’t	perform	the	database	query	to	retrieve	it.
Following	GraphQL’s	patterns	will	result	in	an	API	that’s	designed	correctly—and	optimally—from	the	get-go.

As	the	complexity	of	our	data	model	starts	to	increase,	so	does	the	complexity	of	the	implementation	of	our	REST	API
(which	is,	due	to	all	the	features	we’ve	added	to	it,	arguably	already	approaching	unmaintainable	levels	of	complexity).
In	contrast,	GraphQL	scales	very	gracefully:	multiple	models	are	no	more	challenging	than	one,	and	asynchronous
data	is	just	as	easy	as	synchronous.

Multiple	types	of	data
Thus	far	we’ve	been	retrieving	data	in	a	way	that	is	stylistically	similar	to	the	REST	API	endpoint:	we	request	a	single
user,	or	a	list	of	users,	and	that’s	it.	Retrieving	data	in	this	way	aligns	well	with	the	expectations	of	a	normal,	well-
designed	REST	API.	However,	fundamentally,	a	REST	API	is	not	designed	for	the	data	requirements	of	a	modern
application.	Modern	applications	need	to	access	many	different	types	of	data	simultaneously	in	order	to	successfully
render	a	result.	An	app	might	need	to	show	not	just	a	User	but	also	their	Posts	and	the	Comments.

The	client	should	be	in	control	of	requesting	the	data	they	want	from	the	server.	Ideally,	this	should	be	done	in	a	single
HTTP	request.	With	REST,	we	can	either	make	multiple	HTTP	requests	to	get	the	different	types	of	data	we	need	for
a	page,	or	we	can	design	a	custom	REST	endpoint	that	returns	everything	all	at	once.	GraphQL	employs	a	different
strategy:	a	GraphQL	endpoint	can	return	many	types	and	execute	many	queries,	not	just	one.	This	gives	the	caller	the
power	of	being	able	to	fetch	any	and	all	data	needed	in	a	single	request.

If	we	want	to	request	multiple	types	of	data	with	a	basic	REST	API—one	in	which	each	endpoint	deals	with	a	single
type—our	client	code	might	look	something	like	this:

const	getUserWithGroup	=	user	=>

		fetch(`http://localhost:3000/groups/${user.groupId}`)

				.then(response	=>	response.json())

				.then(group	=>	({

						...user,

						group

Chapter	1:	Understanding	GraphQL	Through	REST

44

				}))

fetch('http://localhost:3000/users')

		.then(response	=>	response.json())

		.then(users	=>	Promise.all(users.map(getUserWithGroup)))

		.then(usersWithGroups	=>	{

				console.log(usersWithGroups)

		})

First	we	request	the	users	from	the	server,	and	once	they’ve	been	returned,	we	request	each	user’s	group.	Once	all
the	groups	are	returned,	we	have	an	array	of	full	user	objects	to	use.	Here	is	the	equivalent	code	using	our	GraphQL
API:

import	{	request	}	from	'graphql-request'

const	query	=	`{	

		users	{	

				username	

				group	{	

						name	

				}	

		}	

}`

request('http://localhost:3000/graphql',	query).then(({	users	})	=>	{

		console.log(users)

})

We	don’t	have	to	wait	for	two	round-trip	requests	to	the	server,	and	we	don’t	have	to	write	code	to	manage	the
Promises	or	combine	the	data	in	the	response	objects.

As	the	complexity	of	a	query	scales,	the	conciseness	of	GraphQL	becomes	increasingly	compelling.	Let’s	say	we
wanted	to	get	the	current		User	,	their		Post	s,	and	each	posts’s		Comment	s:

import	{	request	}	from	'graphql-request'

const	query	=	`{	

		currentUser	{	

				username	

				posts	{

						title

						comments	{

								text

								createdAt

						}

				}

		}	

}`

request('http://localhost:3000/graphql',	query).then(({	currentUser	})	=>	{

		console.log(currentUser)

})

We	get	back	a	user	object	that	has	a	list	of	posts,	and	each	post	has	a	list	of	comments.	The	equivalent	REST	logic	is
even	more	complicated	than	our		usersWithGroups		example,	the	latency	would	increase	to	three	round	trips	(first	for
the	user,	then	for	their	posts,	and	then	once	we	have	the	posts,	for	the	posts’	comments),	and	the	total	number	of
requests	would	be	very	high.	For	example,	if	the	user	had	5	posts,	each	of	which	had	4	comments,	we’d	be	sending
26	requests:	1	to	get	the	user,	5	to	get	the	posts,	and	5	*	4	=	20	to	get	all	the	comments.

We	could	simplify	the	REST	client	code	and	reduce	latency	by	adding	more	complexity	to	our	REST	API.	Instead	of
our	endpoints	dealing	with	a	single	type,	we	could	have	them	return	multiple	types,	as	we	did	for	the	user’s		group	
field	in	the	last	section.	We	could	also	get	all	the	current	user’s	post	and	comment	data	with

Chapter	1:	Understanding	GraphQL	Through	REST

45

	http://localhost:3000/currentUser?fields=posts,posts_comments	,	but	it	would	require	more	complex	logic	for	filtering
nested	fields.

We’ve	looked	at	the	differences	between	using	a	REST	API	and	a	GraphQL	API	to	fetch	a	single	type	that	has	fields
of	other	types,	but	what	about	fetching	multiple	different	top-level	types?	If	we’re	implementing	an	app’s	homepage,
we	might	want	the	current	user’s	name	and	photo,	a	list	of	their	recent	notifications,	and	a	list	of	the	most	recent	posts.
We	could	fetch	that	in	three	requests	with		/currentUser	,		/notifications	,	and		/posts	,	but	if	we	wanted	to	fetch	all
the	data	in	a	single	request,	we	would	need	a	view-specific	endpoint,	for	example		/homepage	.	There	are	a	few	issues
with	building	and	maintaining	view-specific	endpoints.	Between	all	our	client	platforms—for	example,	web,	iOS,	and
Android—we	could	have	a	lot	of	views,	which	means	a	lot	of	endpoints	to	code.	Even	if	the	endpoints	are	all	using	the
same	model	layer	for	database	access,	there’s	still	the	logic	of	putting	together	the	response	object	and	supporting
any	query	parameters	we	might	want.	When	we	remove	a	part	of	a	view—for	instance,	the	recent	posts	from	the
homepage—the	client	is	overfetching	(getting	more	data	than	it	needs)	until	we	update	the		/homepage		endpoint.	And
when	we	want	to	add	new	parts	to	views,	we	need	to	wait	for	the	backend	team	to	add	the	required	data	to	the
endpoint.	Add	versioning	to	all	these	changing	endpoints	in	order	to	keep	supporting	older	native	clients	(or	older
developer	integrations,	in	the	case	of	public	APIs),	and	we’ve	got	a	huge	mess.

Fetching	multiple	top-level	types	from	a	GraphQL	API	doesn’t	require	that	much	new	code.	Let’s	say	we	wanted	to	get
a	list	of	all	of	the	Users	and	Groups	in	our	database	in	a	single	request.	We	have	to	add	in	the	new	access	points	to
get	the	Group	data,	like	we	did	for	the	User:

	graphql-server.js	:

//	Get	the	Mongoose	models	used	for	querying	the	database

const	{User,	Group}	=	require('./models.js')

//	Start	up	a	GraphQL	endpoint	listening	at	/graphql

server.use(

		'/graphql',

		graphqlHTTP({

				schema:	buildSchema(`

								…

								type	Query	{

												user(id:	String!):	User

												users:	[User]

												group(id:	String!):	Group

												groups:	[Group]

								}

				`),

				//	The	query	fields	that	we'll	use	to	get	the	data	for	our

				//	main	queries

				rootValue:	{

						user({id})	{	…	},

						users()	{	…	},

						//	Get	a	group	based	on	the	ID	and	return	it	as	a	Promise

						group({id})	{

								return	Group.findById(id)

						},

						//	Get	an	array	of	groups	and	return	them	as	a	Promise

						groups()	{

								return	Group.find({})

						}

				}

		})

)

And	now	it	works!	If	we	load	up	our	GraphiQL	web	interface,	we	can	see	that	we	not	only	have	access	to	the	existing
	user		and		users		query	fields,	but	also	to	the	new		group		and		groups		fields.	More	importantly,	we	can	include
multiple	query	fields	in	a	single	request:

Chapter	1:	Understanding	GraphQL	Through	REST

46

https://github.com/GraphQLGuide/graphql-rest-api-demo/blob/master/graphql-server.js

The	results	for	all	users	and	all	groups	inside	the	GraphiQL	web	interface.

Here,	we’ve	retrieved	a	list	of	all	the	users	along	with	the	group	they’re	in.	Additionally,	we’ve	retrieved	a	complete	list
of	all	the	groups	in	the	database,	and	all	of	this	information	was	retrieved	in	parallel.

What’s	especially	nice	is	that	we	don’t	have	to	limit	ourselves	to	just	lists	of	data—we	can	mix	in	any	number	of	query
fields,	like	the		group		query	field:

The	results	for	all	users,	groups,	and	a	single	group	inside	the	GraphiQL	web	interface.

In	this	case,	we’re	requesting	three	query	fields	simultaneously	(getting	a	list	of	all	users,	a	list	of	all	groups,	and	also
a	specific	group)	and	returning	all	the	data	in	a	single	request.	This	represents	a	level	of	customization	and	flexibility
that	is	quite	challenging	to	implement	with	a	traditional	REST	API.

In	summary,	the	advantages	of	using	GraphQL	for	fetching	multiple	data	types	are:

The	client	retains	control	over	its	data	requirements:	Instead	of	the	REST	endpoint	dictating	the	queries

Chapter	1:	Understanding	GraphQL	Through	REST

47

being	run	and	the	data	returned,	the	client	can	specify	the	queries	and	the	desired	data	and	get	it	all	back	in	a
single	request.
Simpler	server:	The	server	doesn’t	have	to	attempt	to	permute	all	of	the	possible	desired	endpoints.	This	helps
reduce	the	cost	and	surface	area	for	the	API.	We	don’t	have	to	know	about	all	the	use	cases	or	platforms	that	the
data	will	eventually	appear	in,	so	the	implementation	becomes	much	simpler	and	easier	to	maintain.
Fewer	requests:	It	reduces	the	number	of	distinct	requests	for	data,	and	thus	the	burden	on	both	the	client	and
the	server.	If	we	were	to	request	three	different	pieces	of	data	from	a	REST	API,	it	could	potentially	require	three
different	endpoints	and	three	distinct	HTTP	requests.	With	GraphQL,	we’re	guaranteed	to	have	a	single	request
and	the	same	unchanged	implementation.
Faster:	It	reduces	the	latency	in	the	overall	request	by	allowing	most	of	the	data	loading	to	be	done	on	the	server
rather	than	the	client	(which	has	to	wait	for	the	current	HTTP	request	to	complete	before	initiating	any	other
requests	that	depend	on	the	current	request’s	response).

Security	&	error	handling
When	it	comes	to	the	security	of	our	data	(validating	the	permissions	of	those	that	are	attempting	to	access	it)	and	the
handling	of	errors,	REST	APIs	have	an	idiomatic	solution:	returning	a	specific	error	code.	For	example,	if	we	attempt
to	access	data	which	we	don’t	have	permission	to	access,	we	might	get	an	HTTP	403	Forbidden	code	in	response.	If
our	request	results	in	an	error,	then	we	might	get	an	HTTP	500	Internal	Server	Error	code.	Some	REST	APIs	might
include	detailed	information	on	the	failure	inside	the	response	body	(such	as	the	error	message	or	the	specific	data
that	we	don’t	have	permission	to	access),	but	the	error	codes	are	generally	used	to	designate	the	class	of	error,	not
the	specific	error	itself.

In	GraphQL	every	request	is	expected	to	return	a	result,	even	if	that	result	doesn’t	have	the	data	we	request.
GraphQL	tends	to	treat	security	and	error-handling	issues	similarly.	If	there’s	a	problem	with	accessing	a	specific
piece	of	data,	then		null		is	returned	in	its	place.	This	calls	for	a	defensive,	but	smart,	way	of	coding	an	application.
Since	no	field	is	guaranteed	to	be	there,	we	need	to	ensure	that	it	exists	before	attempting	to	use	it.

For	example,	let’s	say	the	MongoDB	server	wasn’t	running.	The	output	from	our	server	might	look	something	like	this:

{

		"errors":	[

				{

						"message":	"failed	to	reconnect	after	30	attempts	with	interval	1000	ms",

						"locations":	[

								{

										"line":	2,

										"column":	3

								}

],

						"path":	[

								"users"

]

				}

],

		"data":	{

				"users":	null

		}

}

In	this	case,	the		"users"		property	ends	up	being		null	,	and	there’s	an	additional		"errors"		property	that	has	a	list	of
errors	that	were	thrown,	including	where	each	error	came	from—the	field	name	and	the	location	in	the	query.

Whether	a	user	doesn’t	have	permission	to	access	a	piece	of	information	or	the	data	doesn’t	exist,	the	end	result	is
similar:	the	user	doesn’t	get	that	data	and	is	given	a		null		result	instead,	like	in	the	following:

Chapter	1:	Understanding	GraphQL	Through	REST

48

An	example	of	a	failed	load	for	a	group	child	object	inside	the	GraphiQL	web	interface.

In	this	case,	we	either	didn’t	have	an	associated	group	or	we	didn’t	have	permission	to	access	that	group,	so	we	were
given	a		null		value.	GraphQL	gives	the	user	as	much	data	as	it	possibly	can,	leaving	out	anything	that’s	missing	(for
one	reason	or	other).	This	also	allows	the	application	to	render	a	version	of	the	site	that	has	some	portion	of	the
interface	available,	and	allows	it	to	make	note	of	missing	information,	rather	than	displaying	a	general	“Error!”
message	that	contains	no	context.

GraphQL’s	design	provides	a	level	of	consistency	that	should	be	greatly	appreciated	by	all	developers.	Every	request
will	return	a	valid	JSON	response	(unless	something	goes	very	wrong).	There	is	no	guarantee	that	the	response	will
contain	all	of	the	data	we	request,	so	we	end	up	building	more	resilience	into	our	application.	This	should	be	a	best
practice,	as	it	provides	an	optimal	experience	to	the	user.

Tying	this	all	together
REST	APIs	have	served	us	well	for	many	years.	They’ve	made	data	access	for	many	applications	easy	to	understand
and	implement.	However,	as	we’ve	seen	in	this	chapter,	this	simplistic	approach	belies	the	true	complexity	of
implementing	a	full	API	that	supports	a	modern	web	or	mobile	application.

In	a	modern	application,	the	consumer	needs	to	be	in	control	of	what	data	they	can	request.	A	single	page	may	have
many	different	data	models	represented	in	it,	and	short	of	writing	a	unique	REST	endpoint	for	every	page	of	a	site,
REST	simply	doesn’t	have	the	flexibility	to	allow	applications	to	request	the	data	they	need	at	all	times.

While	GraphQL	has	a	number	of	new	concepts	to	learn	(GraphQL	schemas,	the	query	language,	etc.),	these	features
are	designed	to	help	us	write	our	applications	correctly	from	the	start—whereas	the	prospect	of	building	a	comparable
REST	API	can	be	absolutely	overwhelming	in	its	complexity.

GraphQL	truly	is	the	most	developer-friendly	way	of	building	an	API.	It	puts	the	consumer	in	full	control	of	the	data
requested,	and	we	can	therefore	avoid	querying	data	that	we	don’t	need.	As	an	added	bonus,	there	is	clear,
automatically-generated	documentation	we	can	browse	to	understand	any	new	GraphQL	API.

The	developers	of	GraphQL	learned	from	REST’s	challenges	and	mistakes	over	the	years,	and	have	turned	the	best
parts	into	a	streamlined	interface	that	will	surely	be	the	standard	for	API	design	for	many	years	to	come.	The	rest	of
this	book	will	dive	deep	into	the	benefits	of	GraphQL,	how	to	implement	it	efficiently,	and	how	to	build	the	best
applications	using	this	technology.

Chapter	1:	Understanding	GraphQL	Through	REST

49

Chapter	1:	Understanding	GraphQL	Through	REST

50

Chapter	2:	Query	Language
Chapters	2–4	are	a	complete	reference	for	the	GraphQL	specification.	If	you	want	to	get	straight	to	coding,	feel
free	to	skip	ahead	to	Chapter	5:	Client	Dev	or	Chapter	11:	Server	Dev	and	refer	back	here	when	necessary	 .
Or	if	you	have	the	time	and	want	a	thorough	base	of	understanding,	take	it	in	order.

Chapter	contents:

Document
Fields
Arguments
Fragments
Variables
Directives
Mutations
Subscriptions

TODO	write	this	chapter	 .	For	now,	linking	to	graphql.org

Document
Similar	to	how	we	call	a	JSON	file	or	string	a	JSON	document,	a	GraphQL	query	file	or	string	is	called	a	GraphQL
query	document.	The	GraphQL	spec	defines	how	to	write	a	document:

A	document	is	a	list	of	one	or	more	operations	or	fragments.	An	operation	is	either	a		query	,		mutation	,	or
	subscription	.	Our	beginning	examples	are	documents	with	a	single		query		operation,	like	this:

query	{

		githubStars

}

Our	operation	has	a	single	root	query	field,		githubStars	.	In	this	type	of	document—a	single		query		operation	without
variables	or	directives—we	can	omit		query	,	so	the	above	document	is	equivalent	to:

{

		githubStars

}

A	more	complex	document	could	be:

query	StarsAndChapter	{

		githubStars

		chapter(id:	0)	{

				title

		}

}

subscription	StarsSubscription	{

		githubStars

}

mutation	ViewedJavascriptSection	{

		viewedSection(id:	"0-1")	{

Chapter	2:	Query	Language

51

http://facebook.github.io/graphql/October2016/#sec-Language.Query-Document

				...SectionData

		}

}

mutation	ViewedGitSection	{

		viewedSection(id:	"0-2")	{

				...SectionData

		}

}

fragment	SectionData	on	Section	{

		id

		title

}

It	has	all	the	operation	types	as	well	as	a	fragment.	Note	that	when	we	have	more	than	one	type	of	operation,	we
need	to	give	them	names—in	this	case,		StarsAndChapter	,		ViewedDocumentSection	,	and		StarsSubscription	.

The	content	between	an	operation's	outer	curly	braces	is	called	the	selection	set—the	list	of	data	fields	we're
requesting.	For	instance,	the	selection	set	of		StarsAndChapter		is:

{

		githubStars

		chapter(id:	0)	{

				title

		}

}

We	can	think	of	the	selection	set	as	the	left-hand	side	of	a	JSON	document	(with	just	the	attributes),	where	the
response	will	be	the	full	JSON	(with	all	the	values	filled	in).

Fields
fields

Arguments
arguments

Fragments
fragments

inline	fragments

Variables
variables

Directives
directives

Chapter	2:	Query	Language

52

http://graphql.org/learn/queries/#fields
http://graphql.org/learn/queries/#arguments
http://graphql.org/learn/queries/#fragments
http://graphql.org/learn/queries/#inline-fragments
http://graphql.org/learn/queries/#variables
http://graphql.org/learn/queries/#directives

Mutations
mutations

Subscriptions
subscriptions

Chapter	2:	Query	Language

53

http://graphql.org/learn/queries/#mutations
https://github.com/apollographql/graphql-subscriptions#getting-started-with-your-first-subscription

Chapter	3:	Type	System
Chapter	contents:

Schema
Scalar	types
Enum	types
Object	types
Query	&	Mutation	types
Lists
Non-null
Arguments
Unions
Interfaces

TODO	write	this	chapter	 .	For	now,	linking	to	graphql.org

Schema
schema

Scalar	types
scalar	types

Enum	types
enum	types

Object	types
object	types

Query	&	Mutation	types
Query	&	Mutation	types

Lists
lists

Chapter	3:	Type	System

54

http://graphql.org/learn/schema/
http://graphql.org/learn/schema/#scalar-types
http://graphql.org/learn/schema/#enumeration-types
http://graphql.org/learn/schema/#object-types-and-fields
http://graphql.org/learn/schema/#the-query-and-mutation-types
http://graphql.org/learn/schema/#lists-and-non-null

Non-null
non-null

Arguments
arguments

object	arguments

Unions
unions

Interfaces
interfaces

Chapter	3:	Type	System

55

http://graphql.org/learn/schema/#lists-and-non-null
http://graphql.org/learn/schema/#arguments
http://graphql.org/learn/schema/#input-types
http://graphql.org/learn/schema/#union-types
http://graphql.org/learn/schema/#interfaces

Chapter	4:	Validation	&	Execution
Chapter	contents:

Validation
Resolvers
Execution
Error	handling

TODO	write	this	chapter	 .	For	now,	linking	to	graphql.org

Validation
validation

Resolvers
resolvers

Execution
execution

Error	handling
todo

Chapter	4:	Validation	&	Execution

56

http://graphql.org/learn/validation/
http://graphql.org/learn/execution/
http://graphql.org/learn/execution/

Chapter	5:	Client	Dev
This	begins	the	practical	coding	part	of	the	book.	

Client-side:

Chapter	5:	Client	Dev
Web:

Chapter	6:	React
Chapter	7:	Vue

Mobile:
Chapter	8:	React	Native
Chapter	9:	iOS
Chapter	10:	Android

Server-side:

Chapter	11:	Server	Dev

Chapter	5	contents:

Anywhere:	HTTP
cURL
JavaScript

Client	libraries
Streamlined	request	function
View	layer	integration
Caching
Typing
DevTools

GraphQL	can	be	used	between	any	two	computers,	such	as	from	a	web	browser	to	a	server	or	between	two	servers.
Any	computer	with	a	network	connection	can	send	a	GraphQL	request,	and	any	computer	with	an	IP	address	on	that
network	can	receive	that	request	and	send	back	a	response.	Most	software	written	these	days	follows	the	client–
server	model,	in	which	one	computer	is	always	providing	a	service	(a	server),	and	another	computer	is	always
requesting	the	service	(a	client,	such	as	a	web	browser	or	mobile	app).	In	a	GraphQL	client–server	model,	the	client
makes	GraphQL	requests,	and	the	server	provides	the	service	of	responding	to	those	requests.	We’ll	code	GraphQL
clients	in	the	next	few	chapters	and	a	GraphQL	server	in	the	last.

First	we’ll	make	simple	HTTP	requests,	which	we	can	do	from	any	computer.	Most	application	clients	are	web
browsers	or	mobile	apps,	so	after	HTTP,	we’ll	use	the	best	web	and	mobile	GraphQL	libraries	to	create	full-featured
clients.	The	two	web	view	layers	we’ll	be	covering	are	React	and	Vue,	and	we’ll	use	their	most	popular	GraphQL
libraries,	which	are		react-apollo		and		vue-apollo	.	The	best	mobile	libraries	are		Apollo	iOS	,		Apollo-Android	,	and
	react-apollo		for	React	Native.

For	each	type	of	client	and	the	server,	the	app	we’ll	go	through	building	is	graphql.guide—a	web	or	mobile	app	for
reading	the	GraphQL	Guide.

Anywhere:	HTTP

Chapter	5:	Client	Dev

57

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://www.apollographql.com/docs/react/
https://github.com/akryum/vue-apollo#table-of-contents/
https://www.apollographql.com/docs/ios/
https://github.com/apollographql/apollo-android
https://www.apollographql.com/docs/react/
https://graphql.guide/Preface

Background:	HTTP,	JSON

Whether	we’re	writing	JavaScript	for	a	website,	Swift	for	an	iPhone,	C	for	a	microcontroller,	etc.,	we	can	make	a
connection	to	a	server	and	send	an	HTTP	request.	At	its	base,	a	GraphQL	request	is	just	an	HTTP	POST	request.

cURL
When	we’re	on	the	command	line,	we	can	use	cURL	(“See	URL”,	a	tool	for	making	network	requests,	including	HTTP
requests):

$	curl	-X	POST	\

-H	"Content-Type:	application/json"	\

-d	'{"query":	"{	githubStars	}"}'	\

https://api.graphql.guide/graphql

	-X		specifies	which	HTTP	method	to	use—in	this	case	POST
	\		continues	the	command	on	the	next	line
	-H		sets	an	HTTP	header—in	this	case	the		Content-Type		header	(where	we	specify	the	MIME	type	of	the
request	body)	to		application/json	
	-d		sets	the	body	of	the	request—in	this	case	to	our	JSON	query:		{"query":	"{	githubStars	}"}	

	curl		prints	the	response	to	the	command	line:

{"data":{"githubStars":1337}}

When	talking	about	GraphQL,	we	usually	skip	over:

the		{"query":	"X"}		part	of	the	request	body
the		{"data":Y}		part	of	the	JSON	response

Instead	we	just	talk	about:

	X	,	the	GraphQL	document:		{	githubStars	}	
	Y	,	the	value	of	the		"data"		attribute:		{"githubStars":1337}	

JavaScript
In	a	browser,	we	can	use		fetch()		to	make	HTTP	requests:

const	makeGraphqlRequest	=	async	({	endpoint,	document	})	=>	{

		const	options	=	{

				method:	'POST',

				headers:	new	Headers({

						'Content-Type':	'application/json'

				}),

				body:	JSON.stringify({

						query:	document

				})

		}

		const	response	=	await	fetch(endpoint,	options)

		return	response.json()

}

const	logStars	=	async	()	=>	{

		const	response	=	await	makeGraphqlRequest({

				endpoint:	'https://api.graphql.guide/graphql',

				document:	'{	githubStars	}'

		})

Chapter	5:	Client	Dev

58

https://en.wikipedia.org/wiki/CURL
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type
https://en.wikipedia.org/wiki/Media_type
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

		console.log(response)

}

Run	in	browser

Just	as	we	did	with	cURL,	we	make	an	HTTP	POST	request	to	our	endpoint	url	with	a	Content-Type	header	and	a
JSON	body.	Running		logStars()		prints	this	to	the	console:

{

		data:	{

				githubStars:	1337

		}

}

We	can	do	the	same	thing	in	other	languages	by	using	their	HTTP	request	functions	with	equivalent	parameters.

For	our	in-browser	JavaScript	example,	instead	of	logging	the	data,	we	can	display	it	on	the	page:

const	displayStars	=	async	()	=>	{

		const	response	=	await	makeGraphqlRequest({

				endpoint:	'https://api.graphql.guide/graphql',	

				document:	'{	githubStars	}'

		})

		const	starCount	=	response.data.githubStars

		const	el	=	document.getElementById('github-stars')

		el.innerText	=	`The	Guide	has	${starCount}	stars	on	GitHub!`

}

displayStars()

Run	in	browser

This	method	of	displaying	data	(finding	a	DOM	node	with		document.getElementById		or		document.querySelector		and
setting	its		innerText)	is	straightforward	and	great	for	simple	tasks.	However,	most	web	apps	we	build	are	complex
enough	that	they	benefit	greatly	from	a	user	interface	library	like	React—in	the	next	chapter,	we’ll	learn	the	best	way
to	put	GraphQL	data	into	our	React	components.

Client	libraries
There	are	many	different	GraphQL	client	libraries	for	different	platforms	and	languages.	Here	is	some	common
functionality	that	the	libraries	might	provide:

Streamlined	request	function
Typing
View	layer	integration
Caching
DevTools

The	first	is	useful	anywhere—whether	it’s	a	script,	service,	or	website	that’s	mostly	static	(only	displays	a	small
amount	of	dynamically	fetched	data).	The	second	is	useful	when	we’re	working	in	a	typed	programming	language.
The	last	three	are	extremely	helpful	for	building	applications:	whether	we’re	making	a	web	app,	a	mobile	app,	or	a
desktop	app,	we	usually	need	to	fetch	and	display	a	number	of	different	types	of	data	from	the	server,	and	decide
which	to	fetch	and	display	based	on	user	interactions.	We	also	want	to	remember	what	we	requested	in	the	past,
because	often	when	we	need	to	display	it	again,	we	don’t	need	to	fetch	it	again.	Doing	all	of	this	ourselves	can	get
really	complicated,	but	advanced	client	libraries	like	Apollo	can	take	care	of	a	lot	of	it	for	us.

Chapter	5:	Client	Dev

59

http://jsbin.com/hukazic/embed?js,console
https://codesandbox.io/s/m322q18958?module=%2Fsrc%2Findex.js

Streamlined	request	function
The	most	basic	thing	a	library	does	is	give	us	something	like	the		makeGraphqlRequest()		function	we	wrote	above,
which	takes	care	of	constructing	the	HTTP	POST	request	and	parsing	the	response.	For	instance,	the		graphql-
request		client	library	does	this	(and	only	this).

Typing
When	we’re	working	in	typed	languages,	we	have	to	write	our	own	object	types	and	models,	and	when	we	get	JSON
from	a	REST	API,	we	have	to	convert	the	data	into	our	types.	With	GraphQL,	we	know	the	types	for	everything
because	they’re	in	the	schema.	Which	means	that	our	client	libraries	can	provide	us	with	type	definitions	or	generate
typed	model	code	for	us.	For	instance,		apollo-codegen		generates	type	definitions	for	Typescript,	Flow,	and	Scala,
Apollo	iOS	returns	query-specific	Swift	types,	and	Apollo-Android	generates	typed	Java	models	based	on	our	queries
and	schema.

A	combination	of	having	a	schema	and	query	documents	also	allow	for	some	great	code	editor	features,	such	as
autocomplete,	go	to	definition,	and	schema	validation.	(See,	for	example,	the	VS	Code	plugin	and	IntelliJ/WebStorm
plugin.)

View	layer	integration
Most	libraries	even	take	care	of	calling		makeGraphqlRequest		for	us:	we	simply	add	our	query	documents	to	the
components	that	need	them,	and	when	those	components	are	rendered,	the	documents	get	combined	into	a	request
to	the	server.	When	we	get	data	back	from	a	GraphQL	server,	we	usually	want	to	display	it	to	the	user—and
depending	on	the	view	layer,	our	library	may	have	handy	ways	of	helping	us	do	that,	as	well	as	handling	loading	state
and	errors.	We’ll	see	some	specific	examples	of	this	in	the	React,	React	Native,	and	Vue	sections.

Caching
Background:	latency

All	of	the	libraries	we’ll	use	cache	the	data	we	get	from	the	GraphQL	server—that	is,	they	store	the	data,	either	in
memory	or	on	disk,	so	that	we	can	immediately	access	it	later	without	having	to	request	it	again	from	the	server.	While
some	libraries	just	cache	the	whole	response	and	give	us	the	cached	response	when	we	make	the	exact	same
request,	the	most	useful	libraries	store	the	data	in	a	normalized	cache.	A	normalized	cache	breaks	down	the
response	and	saves	each	object	separately,	so	that	if	we	make	a	different,	overlapping	query,	the	library	can	still	give
us	the	cached	data.	As	an	example,	let’s	consider	this	part	of	the	schema	of	the	Guide:

type	Query	{

		currentUser:	User

		section(id:	Int!):	Section

}

type	User	{

		firstName:	String

		hasRead:	[Section]

}

type	Section	{

		title:	String!

}

When	a	user	visits	their	profile,	we	want	to	show	a	list	of	which	sections	they’ve	read,	so	we	send	this	query:

Chapter	5:	Client	Dev

60

https://www.npmjs.com/package/graphql-request
https://github.com/apollographql/apollo-codegen
https://www.apollographql.com/docs/ios/
https://github.com/apollographql/apollo-android
https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo
https://github.com/jimkyndemeyer/js-graphql-intellij-plugin

{

		currentUser	{

				id

				firstName

				hasRead	{

						id

						title

				}

		}

}

Our	query	returns:

{

		"currentUser":	{

				"id":	"1",

				"firstName":	"Loren",

				"hasRead":	[

						{

								"id":	"5_1",

								"title":	"Anywhere:	HTTP"

						},

						{

								"id":	"5_2",

								"title":	"Client	Libraries"

						}

]

		}

}

And	our	library	saves	the	response	in	a	normalized	cache.	The	key	to	each	object	in	the	cache	is	a	string	of	the	format
	"[type]:[object	id]"	,	for	instance		"User:1"		for	a	User	object	with	an	id	of	1:

cache	=	{

		"User:1":	{

				id:	"1",

				firstName:	"Loren",

				hasRead:	[

						"Section:5_1",

						"Section:5_2"

]

		},

		"Section:5_1":	{

				id:	"5_1",

				title:	"Anywhere:	HTTP"

		},

		"Section:5_2":	{

				id:	"5_2",

				title:	"Client	Libraries"

		}

}

If	the	user	then	navigates	to	section		5_2	,	we	want	to	display	the	title	of	that	section,	so	we	look	it	up	with	this	query:

{

		section(id:	"5_2")	{

				title

		}

}

Which	should	return:

{

		"section":	{

				"title":	"Client	Libraries"

Chapter	5:	Client	Dev

61

		}

}

But	we	already	know	from	our	first	query	that		"Client	Libraries"		is	the	title.	Our	normalized	caching	library,	instead
of	sending	our	second	query	to	the	server,	can	find	the	object	with	the		"Section:5_2"		key	in	the	cache	and
immediately	return	it	to	us.

Sometimes	we	want	to	re-request	data	from	the	server,	because	it	may	have	changed	since	we	originally	requested	it.
Client	libraries	certainly	allow	us	to	re-request,	but	we	usually	want	to	immediately	display	the	cached	data	while	we
wait	for	the	response	to	arrive.	The	time	it	takes	to	get	a	value	from	the	cache	and	display	it	on	the	screen	could	be	as
little	as	20ms,	whereas	common	response	times	from	GraphQL	servers	are	on	the	order	of	hundreds	of	milliseconds
or	seconds,	depending	on	the	user’s	network	connection	latency	and	how	long	the	server	takes	to	retrieve	their	data.
Humans	perceive	delays	above	100ms,	so	UX	best	practice	is	to	show	something	on	the	screen	within	100ms	of	a
user	action.	We	probably	won’t	get	a	response	from	our	GraphQL	server	in	time,	so	we’ll	want	to	either	communicate
that	we’re	waiting—for	example	by	displaying	a	spinner—or	display	the	cached	version	of	the	data.

DevTools
Some	libraries	have	browser	DevTools	extensions	for	viewing	information	about	an	app’s	GraphQL	operations	and
the	current	state	of	the	store.	Apollo’s	DevTools	also	has	a	built-in	GraphiQL	that	uses	the	same	network	link	as	our
app,	so	we	don’t	have	to	manually	set	authentication	headers.	We	can	even	use	it	to	query	the	store	instead	of	the
server	by	checking	“Load	from	cache”:

Under	the	Queries	tab,	we	see	the	current	“Watched	queries”	(queries	attached	to	our	components)	and	what
variables	they	were	called	with:

Chapter	5:	Client	Dev

62

https://developers.google.com/web/fundamentals/performance/rail

Under	the	Mutations	tab,	we	see	a	log	of	all	past	mutations	and	their	variables:

Under	the	Cache	tab,	we	see	the	current	state	of	the	store/cache.	Normalized	data	objects	(any	objects	for	which	the
	id		was	requested)	are	listed	on	the	left	and	appear	in	expandable		<details>		nodes	on	the	right:

Chapter	5:	Client	Dev

63

Chapter	5:	Client	Dev

64

Chapter	6:	React
Chapter	contents:

Setting	up
Build	options
App	structure
Set	up	Apollo

Querying
First	query
Loading
Polling
Subscriptions
Lists
Query	variables
Skipping	queries

Authentication
Logging	in
Resetting

Mutating
First	mutation
Listing	reviews
Optimistic	updates
Arbitrary	updates
Creating	reviews
Using	fragments
Deleting
Error	handling
Editing	reviews

Advanced	querying
Paginating

Offset-based
page
skip	&	limit

Cursors
after
orderBy

Updating	multiple	queries
Local	state

Direct	writes
Local	mutations

REST
Review	subscriptions

Subscription	component
Add	new	reviews
Update	on	edit	and	delete

Prefetching
On	mouseover
Cache	redirects

Chapter	6:	React

65

Batching
Persisting
Multiple	endpoints

Extended	topics
Linting

Setting	up	linting
Fixing	linting	errors
Using	linting

Uploading	files
Testing

Background:	single-page	application,	HTTP,	Node,	git,	JSON,	JavaScript,	React

In	this	chapter,	we’ll	learn	to	use	the		react-apollo		library	through	building	the	Guide	web	app—the	code	behind	the
https://graphql.guide	site,	where	we	can	sign	in,	read	the	book,	and	write	reviews.	[Beta	note:	the	site	isn’t	yet
complete,	so	you’ll	see	lorem	ipsum	in	place	of	book	content	 .]	We’ll	go	through	setup,	simple	queries,	complex
queries,	auth,	and	mutations	for	creating,	updating,	and	deleting.	Then	we’ll	cover	advanced	topics	like	infinite
scrolling,	local	state,	SSR,	working	offline,	and	performance.	Here’s	what	it	will	look	like:

Setting	up
Section	contents:

Build	options
App	structure
Set	up	Apollo

Build	options

Chapter	6:	React

66

https://www.apollographql.com/docs/react/
https://graphql.guide/Preface

Background:	server-side	rendering

In	the	early	days,	setting	up	a	new	React	app	was	plagued	by	complex	Webpack	and	Babel	configurations.	There	are
now	a	number	of	tools	for	this,	four	of	which	we	recommend:	Create	React	App,	Gatsby,	Next.js,	and	Meteor.

Babel	converts	our	modern	JavaScript	to	old	JavaScript	so	it	will	run	in	the	browser	or	Node.	Webpack	bundles
our	JavaScript	and	other	files	together	into	a	website.

Create	React	App

npm	i	-g	create-react-app

create-react-app	guide

cd	guide/

npm	start

Create	React	App	(CRA)	is	a	tool	that	configures	Webpack	and	Babel	to	good,	common	defaults.	For	deployment,
running		npm	run	build		gives	us	an		index.html	,	our	JavaScript	bundle	(or	multiple	bundles	if	we’re	code	splitting),
and	imported	static	assets	like	CSS,	images,	and	fonts.

Gatsby

npm	install	-g	gatsby-cli

gatsby	new	guide

cd	guide/

gatsby	develop

Gatsby	is	the	best	static	site	generator	out	there.	But	by	“static	site	generator,”	we	don’t	mean	it	generates	HTML-only
noninteractive	sites.	It	generates	pages	that	render	the	HTML	&	CSS	UI	immediately	and	run	JavaScript	to	hydrate
the	page	into	a	React	app.	It	can’t	generate	logged-in	content	(like	you	can	with	SSR	and	cookies)	because	it’s	not
your	production	server—deploying	is	building	HTML,	JS,	and	CSS	files	and	serving	them	as-is	(statically).	However,
you	can	render	logged-in	content	on	the	client.

Next.js

npm	i	-g	create-next-app

create-next-app	guide

cd	guide/

npm	run	dev

Next.js	is	similar	to	CRA	in	that	it	takes	care	of	Webpack/Babel	for	us,	but	it	also	does	server-side	rendering	(SSR),
routing,	automatic	page-level	code	splitting,	dynamic	importing,	and	hot	code	reloading.	CRA	and	Gatsby	are	just	your
dev	server	and	build	tool,	whereas	Next,	since	it	does	SSR,	is	also	your	Node	production	server.

Next	does	have	an		export		command	that	outputs	HTML	and	JS	that	you	can	serve	as	static	files	(like	Gatsby),
but	the	HTML	is	rendered	once	at	the	time	that	you	run	the		export		command,	instead	of	in	real	time	whenever
a	client	requests	the	site.

Meteor

https://github.com/GraphQLGuide/guide.git

curl	https://install.meteor.com/	|	sh

git	clone	https://github.com/jamiter/meteor-starter-kit.git	guide

cd	guide/

npm	install

meteor

Chapter	6:	React

67

https://babeljs.io/
https://webpack.js.org/
https://github.com/facebookincubator/create-react-app
https://www.gatsbyjs.org/
https://www.gatsbyjs.org/docs/building-apps-with-gatsby/
https://github.com/zeit/next.js
https://github.com/GraphQLGuide/guide.git

Meteor	is	similar	to	Next	in	that	it	is	not	only	the	build	tool	but	also	the	production	server.	Unlike	the	other	options,	it
does	not	use	Webpack—it	has	its	own	advanced	build	system	that	is	blissfully	configuration-free.	It	does	not	have
built-in	SSR	like	Next	does,	but	it	does	have	dynamic	imports,	and	all	dynamically	imported	modules	are	fetched
quickly	over	a	WebSocket	and	cached	on	the	client	(in	IndexedDB).	It	also	does	differential	bundling,	further	reducing
bundle	size	for	modern	browsers.

App	structure
For	our	Guide	app,	we’ll	use	CRA,	because	it’s	the	most	widely	used	and	the	most	basic,	straightforward	option.
Here’s	our	starter	app:

git	clone	https://github.com/GraphQLGuide/guide.git

cd	guide/

git	checkout	0_0.2.0

npm	install

Now	we	should	be	able	to	run	CRA’s	development	server:

npm	start

And	see	our	app	at	localhost:3000:

Our	file	structure	is	very	similar	to	what	we	get	when	we	run		create-react-app	:

.

├──	.eslintrc

├──	.gitignore

├──	package-lock.json

├──	package.json

├──	public

│			├──	favicon.ico

Chapter	6:	React

68

https://www.meteor.com
https://blog.meteor.com/announcing-meteor-1-5-b82be66571bb
https://en.wikipedia.org/wiki/Indexed_Database_API
https://blog.meteor.com/meteor-1-7-and-the-evergreen-dream-a8c1270b0901
http://localhost:3000/

│			├──	index.html

│			└──	manifest.json

└──	src

				├──	App.test.js

				├──	components

				│			└──	App.js

				├──	index.css

				├──	index.js

				├──	jsconfig.json

				├──	logo.svg

				└──	registerServiceWorker.js

	.eslintrc.js		—	The	CRA	dev	server	(npm	start)	outputs	linter	warnings	(background	on	ESLint),	but	it’s	nice	to
see	the	warnings	directly	in	our	text	editor,	so	we	have	an		.eslintrc		file	that	uses	the	same	rules	as	the	dev	server.
Most	editors’	eslint	plugins	will	pick	this	up,	including		eslint		for	our	recommended	editor,	VS	Code.

	package.json	

{

		"name":	"guide",

		"version":	"0.2.0",

		"private":	true,

		"dependencies":	{

				"react":	"^16.0.0",

				"react-dom":	"^16.0.0",

				"react-scripts":	"1.0.14",

				...

		},

		"scripts":	{

				"start":	"react-scripts	start",

				"build":	"react-scripts	build",

				"test":	"react-scripts	test	--env=jsdom",

				"eject":	"react-scripts	eject",

				...

		}

}

We	have	our	normal	react	dependencies,		react		and		react-dom	,	plus		react-scripts	,	which	is	what	CRA	lives
inside,	and	which	provides	the	commands:

	npm	start		starts	the	dev	server
	npm	run	build		bundles	app	for	deployment
	npm	test		runs	all	the	tests	found	in		*.test.js		files
	npm	run	eject		takes	us	out	of	CRA	(replaces		react-scripts		in	our		devDependencies		with	a	long	list	of	other
packages,	adds	a		scripts/		directory,	and	adds	an	8-file		config/		directory	with	Webpack,	Babel,	and	testing
configuration)

In	our		public/		directory,	we	have	a	favicon,		manifest.json		(which	is	used	when	our	app	is	added	to	an	Android
homescreen),	and	our	only	HTML	page,		public/index.html		—	our	SPA	shell,	basically	just:

<!doctype	html>

<html	lang="en">

		<head>

				<title>The	GraphQL	Guide</title>

		</head>

		<body>

				<div	id="root"></div>

		</body>

</html>

We	can	add	HTML,	like	meta	tags	to	the	head	or	the	Google	Analytics	tracking	script	to	the	bottom	of	the	body.	Our
React	JavaScript	code	gets	added	to	the	body,	and	when	it	runs,	it	puts	the	app	inside	the	root	tag		<div	id="root">
</div>	:

Chapter	6:	React

69

https://eslint.org/docs/about/
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/Favicon

	src/index.js	

import	React	from	'react'

import	ReactDOM	from	'react-dom'

import	'./index.css'

import	App	from	'./App'

import	registerServiceWorker	from	'./registerServiceWorker'

ReactDOM.render(<App	/>,	document.getElementById('root'))

registerServiceWorker()

module.hot.accept()

Let’s	look	at	some	of	the	lines:

	import	'./index.css'		—	CRA	supports	importing	CSS	from	JavaScript.	There	are	many	ways	to	do	CSS	with	React,
and	we’ll	be	sticking	with	this	single	plain		.css		file	so	that	we	can	focus	on	the	GraphQL	parts	of	app-building.

	ReactDOM.render(<App	/>,	document.getElementById('root'))		—	Our	only	component,		<App	/>	,	gets	rendered	into	the
	#root		div.

	registerServiceWorker()		—	CRA	includes	a	service	worker	(set	up	by		src/registerServiceWorker.js)	that	caches
our	assets	in	the	browser	so	that	our	app	loads	faster	(more	info).

	module.hot.accept()		—	This	enables	HMR	(Hot	Module	Replacement),	a	Webpack	feature	that	updates	JavaScript
when	code	is	saved	in	development	without	reloading	the	page.

Here’s	our	App	component:

	src/components/App.js	

import	React,	{	Component	}	from	'react'

import	logo	from	'./logo.svg'

class	App	extends	Component	{

		render()	{

				return	(

						<div	className="App">

								<header	className="App-header">

										

										<h1	className="App-title">The	GraphQL	Guide</h1>

								</header>

								<p	className="App-intro">

										To	get	started,	edit	<code>src/App.js</code>,	and	save	to	reload.

								</p>

						</div>

)

		}

}

export	default	App

	import	logo	from	'./logo.svg'		—	CRA	supports	importing	files,	like	images	and	fonts.	When	we	import	a	file,	it	gets
included	in	the	app	bundle,	and	we	get	a	URL	that	we	can	use—for	example,	in	a		src		attribute:

We	also	have	a	test	file:

	src/App.test.js	

import	React	from	'react'

import	ReactDOM	from	'react-dom'

import	App	from	'./App'

Chapter	6:	React

70

https://github.com/GraphQLGuide/guide/blob/0_0.2.0/src/index.js
https://create-react-app.dev/docs/making-a-progressive-web-app/
https://webpack.js.org/concepts/hot-module-replacement/
https://github.com/GraphQLGuide/guide/blob/0_0.2.0/src/components/App.js
https://github.com/GraphQLGuide/guide/blob/0_0.2.0/src/App.test.js

it('renders	without	crashing',	()	=>	{

		const	div	=	document.createElement('div')

		ReactDOM.render(<App	/>,	div)

})

This	and	any	other	files	ending	in		.test.js		get	run	when	we	do		npm	test	.

The	last	thing	in		src/		is	our	jsconfig.json	file,	which	tells	VS	Code	what	type	of	JavaScript	we’re	using	(CRA
includes,	for	example,	async/await	from	ES2017)	and	where	it’s	located.

Set	up	Apollo
The	best	GraphQL	library	for	React	is		react-apollo	.	It	has	all	the	features	we	talked	about	in	the	Client	Libraries
section	and	more.	Our		package.json		already	has	these	packages,	but	normally	we	would	install		react-apollo		and	its
associated	packages	with:

npm	i	-S	react-apollo	graphql	graphql-tag	apollo-client	apollo-cache-inmemory	apollo-link-http

Now	we	need	to	create	an	instance	of		ApolloClient		and	wrap	our	app	JSX	in	a	component	called		<ApolloProvider>	,
which	provides	our	client	instance	to	all	descendants.	So	we	go	to		src/index.js	,	where	our		<App	/>		component	is
rendered,	and	replace	the		ReactDOM.render		line:

	src/index.js	

import	{	ApolloClient	}	from	'apollo-client'

import	{	ApolloProvider	}	from	'react-apollo'

import	{	InMemoryCache	}	from	'apollo-cache-inmemory'

import	{	createHttpLink	}	from	'apollo-link-http'

const	link	=	createHttpLink({

		uri:	'https://api.graphql.guide/graphql'

})

const	cache	=	new	InMemoryCache()

const	client	=	new	ApolloClient({	link,	cache	})

ReactDOM.render(

		<ApolloProvider	client={client}>

				<App	/>

		</ApolloProvider>,

		document.getElementById('root')

)

We	highly	recommend	typing	out	the	code	instead	of	copy/pasting—you’ll	learn	it	better!	

We	tell		ApolloClient		where	to	send	queries	by	giving	it	a	network	link	pointed	at	our	GraphQL	server—in	this	case
	https://api.graphql.guide/graphql	.

Querying
Section	contents:

First	query
Loading
Polling
Subscriptions

Chapter	6:	React

71

https://code.visualstudio.com/docs/languages/jsconfig
https://www.apollographql.com/docs/react/
https://github.com/GraphQLGuide/guide/blob/1_0.2.0/src/index.js

Lists
Query	variables
Skipping	queries

First	query
One	of	the	fields	we	can	query	for	is		githubStars	,	the	number	of	stars	the	Guide’s	github	repo	has.	Let’s	look	at	how
we	can	make	that	query	and	display	the	results.	We’ll	start	out	by	adding	a	component	to	display	the	star	count:

	src/components/StarCount.js	

import	React	from	'react'

const	StarCount	=	({	githubStars	})	=>	{

		return	(

				

						{githubStars}

				

)

}

But	how	do	we	get		githubStars		as	a	prop?	First	we	write	the	query,	which	is	pretty	simple,	since	it’s	a	top-level	scalar
query	field:

import	gql	from	'graphql-tag'

const	STARS_QUERY	=	gql`

		query	StarsQuery	{

				githubStars

		}

`

We	name	it		STARS_QUERY		because	convention	is	to	use	all	caps	for	query	constants.	We	use	an	operation	name
(StarsQuery)	so	that	it’s	easier	to	find	and	debug.		gql		is	a	template	literal	tag	that	parses	our	query	document
string,	converting	it	into	a	structured	object	that	we	can	pass	to	Apollo—now	we	can	give	it	to	Apollo’s		<Query>	
component:

import	PropTypes	from	'prop-types'

import	{	Query	}	from	'react-apollo'

const	StarCount	=	...

StarCount.propTypes	=	{

		githubStars:	PropTypes.number,

		loading:	PropTypes.bool.isRequired

}

export	default	()	=>	(

		<Query	query={STARS_QUERY}>

				{({	data:	{	githubStars	},	loading	})	=>	(

						<StarCount	githubStars={githubStars}	loading={loading}	/>

)}

		</Query>

)

It	follows	the	render	prop	pattern,	in	which		Query		calls		children		as	a	function,	giving	the	function	an	object
argument	with	information	about	the	query.	There	are	many	object	attributes	we	can	choose	from,	but	for	now,	we’ll
just	use		data		(the		"data"		attribute	in	the	response	from	the	server)	and		loading	,	a	boolean	that	lets	us	know	when
we’re	waiting	for	the	response	to	arrive	from	the	server.	In	our		children		function	(which	is	called	the	render	prop),	we
pass	those	two	arguments	as	props	to		<StarCount>	.

Chapter	6:	React

72

https://github.com/GraphQLGuide/guide
https://github.com/GraphQLGuide/guide/blob/1_0.2.0/src/components/StarCount.js
http://graphql.org/learn/queries/#operation-name
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals#Tagged_template_literals
https://reactjs.org/docs/render-props.html
https://www.apollographql.com/docs/react/essentials/queries.html#render-prop

When	the	page	is	loaded	and	the		<Query>		component	is	created,	Apollo	will	send	the	query	to	the	server	and	give
the	result	to	our	render	prop.	Now	we	can	add	the	component	to	our	app:

	src/components/App.js	

import	StarCount	from	'./StarCount'

...

<header	className="App-header">

		<StarCount	/>

		

		<h1	className="App-title">The	GraphQL	Guide</h1>

</header>

And	we	have	a	working	GraphQL-backed	app!

	react-apollo		provides	two	APIs	for	making	queries—the		<Query>		render	prop	API,	and	the	HOC	(higher-order
component)	API.	Which	we	use	is	mostly	a	matter	of	preference—the	one	thing	the	render	prop	API	can	do	that	the
HOC	API	can’t	is	use	a	dynamic	query.	The	aesthetic	differences	are	whether	we’re	providing	querying	options	and
child	component	props	in	JSX	(render	prop)	or	JS	objects	(HOC),	and	whether	we	combine	multiple	queries	by
nesting	JSX	or	composing	HOCs.	Since	we’ll	be	writing	components	that	use	multiple	queries	and	mutations,	and	we
have	limited	horizontal	width	in	our	ebook	readers,	we’ll	avoid	highly	nested	JSX	by	mostly	using	HOCs.	Note	that	it’s
easy	to	translate	between	the	two	APIs,	since	they	have	the	same	props	and	provide	us	with	the	same	information.	So
when	we	learn	one	API,	we	learn	both.

Here’s	the	same	component	using		react-apollo	’s		graphql()		HOC	API:

import	{	graphql	}	from	'react-apollo'

const	StarCount	=	...

const	withData	=	graphql(STARS_QUERY,	{

		props:	({	data:	{	githubStars,	loading	}	})	=>	({

				githubStars,

				loading

		})

})

export	default	withData(StarCount)

	graphql()		creates	an	HOC,	which	we	call		withData		and	use	to	wrap		StarCount	.	The	first	parameter	to		graphql()	
is	the	query	(which	is	why	with	the	HOC	API,	we	can’t	change	the	query),	and	the	second	is	an	optional	config	object.
Here	we’re	using	the		props		config	function,	which	tells	Apollo	which	props	we	want	our	component	to	be	given.	The
function	gets	the	query	response,	in	the	form:

Chapter	6:	React

73

https://github.com/GraphQLGuide/guide/compare/0_0.2.0...1_0.2.0
https://reactjs.org/docs/higher-order-components.html
https://www.apollographql.com/docs/react/api/react- apollo.html#graphql

{

		data:	{

				githubStars:	1,

				loading:	false,

				other	things...

		}

}

and	returns	which	props	we	want—in	this	case		githubStars		and		loading	—instead	of	the	default		data		prop	with	a
long	list	of	things.

Loading
If	you’re	jumping	in	here,		git	checkout	1_0.2.0		(tag	1_0.2.0,	or	compare	1...2)

When	we	reload	the	app,	we	see	a	flash	of	“:star:	stars”	before	the	number	appears,	pushing		stars		to	the	right.
When		<StarCount>		is	rendered	the	first	time,	it	doesn’t	have	the	number	of	stars	yet,	but	it	tells	Apollo	to	send	the
query.	Once	the	query	response	comes	back	from	the	server,	is	re-rendered—	this	time,	with	the	number.	Let’s	log	to
see	it	happening:

	src/components/StarCount.js	

const	StarCount	=	({	githubStars,	loading	})	=>	{

		console.log(

				'rendering	StarCount',

				`githubStars:	${githubStars},	loading:	${loading}`

)

rendering	StarCount

githubStars:	undefined,	loading:	true

rendering	StarCount

githubStars:	8,	loading:	false

We	see	that	it’s	rendered	twice—first		loading		is		true		and		githubStars		is		undefined	,	and	then	later,	once	the
query	has	finished,		loading		is		false		and		githubStars		has	a	value.

	:star:	stars		without	a	number	doesn’t	make	sense,	and		stars		jumping	to	the	right	when	the	number	appears
doesn’t	look	nice,	so	let’s	hide	everything	until	the	number	has	arrived	by	adding	the	modifier	CSS	class		'loading'	
when	the		loading		prop	is		true	:

import	classNames	from	'classnames'

const	StarCount	=	({	githubStars,	loading	})	=>	{

		return	(

				<a	className={classNames('StarCount',	{	loading	})}

	classNames		takes	strings	or	objects	as	arguments	and	combines	them	into	a	React		className		string.	For
objects,	it	includes	the	key	if	the	value	is	true.	For	example,		classNames('a',	{	b:	false,	c:	true	},	'd')	
returns		'a	c	d'	.

When		loading		becomes		false	,	the	CSS	class		'loading'		is	removed,	and	the	component	fades	in.

Polling

Chapter	6:	React

74

https://www.apollographql.com/docs/react/api/react-apollo.html#graphql-query-options
https://github.com/GraphQLGuide/guide/tree/1_0.2.0
https://github.com/GraphQLGuide/guide/compare/1_0.2.0...2_0.2.0
https://github.com/GraphQLGuide/guide/blob/1_0.2.0/src/components/StarCount.js

Right	now	our	star	count	is	static—once	it’s	fetched,	the	number	remains	on	the	page	until	the	page	is	refreshed.	If	the
actual	number	of	stars	on	the	repository	changes,	we	won’t	know	until	we	refresh.	If	we	want	to	keep	the	number	(and
any	other	GraphQL	data)	up	to	date,	we	can	do	so	in	two	different	ways:	polling	and	subscriptions.	Polling	is	much
easier	to	implement,	so	let’s	do	that	first.	We	can	add	a		pollInterval		prop	to	our	query	in		StarCount.js	:

	src/components/StarCount.js	

<Query	query={STARS_QUERY}	pollInterval={5	*	1000}>

		{({	data:	{	githubStars	},	loading	})	=>	(

				<StarCount	githubStars={githubStars}	loading={loading}	/>

)}

</Query>

Now	every	five	seconds,	Apollo	will	resend	our		STARS_QUERY	.	If	the	response	has	a	different	value	for		githubStars	,
Apollo	will	pass	us	the	new	prop,	which	will	trigger	a	component	re-render,	and	the	new	count	will	be	displayed	on	the
page.

The	equivalent		pollInterval		option	with		graphql()		is:

const	withData	=	graphql(STARS_QUERY,	{

		options:	{	pollInterval:	5	*	1000	},

		props:	...

})

Depending	on	what	type	of	data	we’re	keeping	up	to	date,	we	may	want	to	use	some	kind	of	visual	cue	or	animation
when	it	changes.	There	are	a	few	possible	motivations	for	this:

1.	 Calling	attention	to	the	change	to	make	the	user	aware	that	it	happened—a	common	example	in	this	category	is
the	brief	yellow	background	glow.	Another	example	is	in	Google	Docs—the	colored	cursor	labeled	with	a	name
that	follows	someone’s	live	edits.	However,	sometimes	a	user	doesn’t	need	to	know	that	a	piece	of	data	has
changed,	and	calling	attention	to	it	would	needlessly	distract	them	from	what	they	were	paying	attention	to.

2.	 Making	the	change	visually	smoother.	If	a	change	in	the	data	triggers	some	node	on	the	page	to	change	in	size,
and	there	are	other	nodes	on	the	page	around	it,	the	other	nodes	might	jump	to	a	new	location	when	the	browser
reflows—for	example,	if	the	data	is	a	paragraph	of	text,	and	the	updated	paragraph	is	twice	as	long,	everything
below	that	paragraph	will	be	pushed	down.	We	can	make	this	change	look	nicer	by	animating	the	data	container
to	its	new	size	and	animating	the	displaced	components	to	their	new	locations.	This	also	gives	time	for	the	user	to
notice	which	part	of	the	page	changed,	which	is	helpful	for	situations	in	which	the	user	doesn’t	realize	why	things
on	the	page	jumped	around.

3.	 For	fun	 .	Animations	can	be	fun,	and	sometimes	we	add	them	just	because	we	like	how	it	feels.

The	data	change	that	happens	in	our	app	is	a	number	that	is	usually	just	going	up	by	1.	This	type	of	change	is	well-
suited	to	an	odometer	animation,	where	each	digit	is	on	a	number	wheel	that	rotates	up	or	down	to	reveal	the	next
number.	The	benefit	of	this	animation	is	#3,	and	the	downside	is	#1—the	odometer	changing	draws	more	attention	to
the	change	than	a	non-animated	change	does,	but	the	user	doesn’t	need	to	know	when	the	star	count	changes
(they’re	just	trying	to	read	the	book!).	So	we	might	not	add	this	animation	to	a	serious	app,	but	let’s	add	it	to	our	app
for	fun	 .	It’s	easy	with	the		react-odometerjs		component:

	src/components/StarCount.js	

import	Odometer	from	'react-odometerjs'

...

				<a

						className={classNames('StarCount',	{	loading	})}

						href="https://github.com/GraphQLGuide/guide"

						target="_blank"

						rel="noopener	noreferrer"

				>

Chapter	6:	React

75

https://www.apollographql.com/docs/react/essentials/queries.html#refetching
https://github.com/GraphQLGuide/guide/compare/1_0.2.0...2_0.2.0
https://www.apollographql.com/docs/react/basics/queries.html#graphql-config-options-pollInterval
https://www.npmjs.com/package/react-odometerjs
https://github.com/GraphQLGuide/guide/compare/1_0.2.0...2_0.2.0

						{githubStars	&&	<Odometer	value={githubStars}	/>}

				

Now	when	the	polling		STARS_QUERY		results	in	a	new		githubStars		value,	we	pass	the	new	number	to	the		<Odometer>	
component,	which	does	the	animation.

We	need	the	truth	guard	(githubStars	&&)	because		<Odometer>		throws	an	error	when	it’s	given	an		undefined	
value	(and	as	we	found	out	before	when	logging,		githubStars		starts	out		undefined).

We	can	test	it	out	by	starring	and	un-starring	the	repository	on	GitHub	and	watching	the	number	in	our	app	update.

Subscriptions
Background:	webhooks

If	you’re	jumping	in	here,		git	checkout	2_0.2.0		(tag	2_0.2.0,	or	compare	2...3)

When	we	poll	for	new	data	every	5	seconds,	it	takes	2.5	seconds	on	average	(as	little	as	0,	and	as	much	as	5)	for	a
change	to	show	up,	plus	a	little	time	for	the	server	to	talk	to	GitHub	and	get	the	response	back	to	us.	For	certain	types
of	apps,	like	a	chat	app	or	multiplayer	games,	it’s	important	to	receive	updates	in	less	than	2.5	seconds.	One	thing	we
can	do	is	reduce	the	poll	interval—for	instance,	a	500	ms	interval	would	mean	an	average	update	speed	of	250	ms
(plus	server	response	time).	This	would	be	fast	enough	for	a	chat	app	but	not	fast	enough	for	some	games.	And	it
comes	at	a	certain	cost	in	server	workload	(it	now	has	to	respond	to	10	times	as	many	requests)	and	browser
workload	(sending	requests	takes	up	main-thread	JavaScript	time,	perhaps	during	one	of	the	10ms	windows	in	which
the	thread	needs	to	quickly	calculate	a	60	fps	animation).	So	while	polling	is	often	the	best	choice	given	its	simplicity
to	implement	(we	just	added	that	single		pollInterval		option),	sometimes	we	want	something	more	efficient	and	real-
time.

In	these	cases	we	can	use	GraphQL	subscriptions,	in	which	our	server	will	send	us	updates	to	our	data	as	they	occur.
The	main	drawback	to	subscriptions	is	that	it	takes	extra	work	to	implement	on	the	server.	(In	the	next	chapter	we’ll
learn	how	to	add	subscription	support.)	Another	possible	drawback	is	that	if	the	subscription	data	changes	frequently,
it	can	hurt	client	performance	by	taking	up	time	receiving,	updating	the	store,	and	re-rendering	the	page.

While	GraphQL	servers	can	support	different	methods	of	transporting	subscription	updates	to	clients	(the	GraphQL
spec	is	transport-agnostic),	the	usual	method	is	over	WebSockets.

WebSocket	is	a	format	for	sending	messages	over	the	internet	(like	HTTP).	It	allows	for	very	fast	two-way
communication	by	keeping	a	connection	open	and	allowing	the	server	to	initiate	messages	to	the	client.

We	could	replace	our	HTTP	link	with	a	WebSocket	link	in		index.js		using	the		apollo-link-ws		package:

import	{	WebSocketLink	}	from	'apollo-link-ws'

const	link	=	new	WebSocketLink({

		uri:	`ws://localhost:5000/`,

		options:	{

				reconnect:	true

		}

})

This	would	establish	a	WebSocket	connection	that	remains	open	for	the	duration	of	the	client	session,	and	all
GraphQL	communication	(queries,	mutations,	and	subscriptions)	would	be	sent	over	the	connection.	However,
authentication	over	the	WebSocket	is	a	little	involved,	so	we’ll	go	with	a	hybrid	transport	solution:	we’ll	send	queries
and	mutations	over	an	HTTP	link	(which	we’ll	add	auth	to	later),	and	we’ll	send	subscriptions	over	the	unauthenticated
WebSocket	link.	We	can	do	this	because	all	of	the	data	used	in	the	Guide’s	real-time	features	(for	example
	StarCount	,	and	later	on,	reviews)	is	public.

Chapter	6:	React

76

https://github.com/GraphQLGuide/guide
https://github.com/GraphQLGuide/guide/tree/2_0.2.0
https://github.com/GraphQLGuide/guide/compare/2_0.2.0...3_0.2.0
https://developers.google.com/web/fundamentals/performance/rail
https://dev-blog.apollodata.com/graphql-subscriptions-in-apollo-client-9a2457f015fb
https://www.npmjs.com/package/apollo-link-ws

	src/index.js	

import	{	split	}	from	'apollo-link'

import	{	WebSocketLink	}	from	'apollo-link-ws'

import	{	getMainDefinition	}	from	'apollo-utilities'

const	httpLink	=	createHttpLink({

		uri:	'https://api.graphql.guide/graphql'

})

const	wsLink	=	new	WebSocketLink({

		uri:	`wss://api.graphql.guide/subscriptions`,

		options:	{

				reconnect:	true

		}

})

const	link	=	split(

		({	query	})	=>	{

				const	{	kind,	operation	}	=	getMainDefinition(query)

				return	kind	===	'OperationDefinition'	&&	operation	===	'subscription'

		},

		wsLink,

		httpLink

)

The		ApolloClient		constructor	options	object	takes	a	single	link,	so	we	need	to	compose	our	two	links	together.	We
can	use	the		split()		function,	which	takes	a	function	and	two	links.	The	function	is	given	the	current	query,	and	if	it
returns	true,	the	first	link	is	used	for	the	query;	otherwise,	the	second	is	used.	In	our		split()		function	we	look	up	the
query	operation	and	return	true	if	it’s	a	subscription	query,	which	directs	the	query	to	the	WebSocket	link		wsLink	.

Now	we	can	subscribe	to	updates	to	the	star	count	with	this	simple	subscription:

	src/components/StarCounts.js	

const	STARS_SUBSCRIPTION	=	gql`

		subscription	StarsSubscription	{

				githubStars

		}

`

To	start	the	subscription,	we	use	a	function		subscribeToMore		that		react-apollo		provides	us:

	src/components/StarCounts.js	

StarCount.propTypes	=	{

		githubStars:	PropTypes.number,

		loading:	PropTypes.bool.isRequired,

		subscribeToMore:	PropTypes.func.isRequired

}

...

<Query	query={STARS_QUERY}	pollInterval={5	*	1000}>

		{({	data:	{	githubStars	},	loading,	subscribeToMore	})	=>	(

				<StarCount

						githubStars={githubStars}

						loading={loading}

						subscribeToMore={subscribeToMore}

				/>

)}

</Query>

And	then	we	can	use	it	in	our	component.	We	want	to	start	the	subscription	when	the	component	is	initialized	(in
	componentDidMount),	so	we	need	to	convert		StarCounts		from	a	functional	component	to	a	class	that	can	have
lifecycle	methods:

Chapter	6:	React

77

https://github.com/GraphQLGuide/guide/compare/2_0.2.0...3_0.2.0
http://apollo-link-docs.netlify.com/docs/link/composition.html#directional
https://github.com/GraphQLGuide/guide/compare/2_0.2.0...3_0.2.0
https://www.apollographql.com/docs/react/features/subscriptions.html#subscribe-to-more
https://github.com/GraphQLGuide/guide/compare/2_0.2.0...3_0.2.0
https://reactjs.org/docs/react-component.html#the-component-lifecycle

	src/components/StarCounts.js	

class	StarCount	extends	React.Component	{

		componentDidMount()	{

				this.props.subscribeToMore({

						document:	STARS_SUBSCRIPTION,

						updateQuery:	(

								previousResult,

								{	subscriptionData:	{	data:	{	githubStars	}	}	}

)	=>	({	githubStars	})

				})

		}

		render()	{

				const	{	githubStars,	loading	}	=	this.props

				...

		}

}

	subscribeToMore		takes	the	GraphQL	document	specifying	our	subscription	and	an		updateQuery		function.
	updateQuery		is	called	each	time	the	client	receives	new	subscription	data	from	the	server.	It’s	given	the	result	of	the
previous	query	(STARS_QUERY		in	our	case)	and	the	subscription	data,	and	it	returns	an	updated	query	result,	which	is
used	to	provide	new	props	to	the	component.	In	our	case,	we’re	just	replacing	the	old	result	with	the	GitHub	star	count
received	in	the		subscriptionData	.	But	if	GitHub	never	lets	us	un-star	repos,	and	the	star	count	only	ever	increased,
then	we	might	use	a		justGotStarred		subscription	that	published		{	newStar:	true	}		to	the	client.	Then	our
	updateQuery		would	look	like:

this.props.subscribeToMore({

		document:	JUST_GOT_STARRED_SUBSCRIPTION,

		updateQuery:	(previousResult,	update)	{

				return	{

						githubStars:	previousResult.githubStars	+	1

				}

		}

})

The	last	thing	we	need	to	do	is	test	whether	our		STARS_SUBSCRIPTION		is	working:	we	stop	polling	by	removing	the
	pollInterval		prop	from	our		<Query>		in		StarCount.js	:

<Query	query={STARS_QUERY}	pollInterval={5	*	1000}>

Now	we	can	star	and	unstar	the	Guide	repo	and	see	the	count	quickly	change	in	our	app.	We	might	notice	a	slight
delay	sometimes,	and	that’s	because	the	server	is	polling	the	GitHub	API	once	a	second	for	updates,	so	the
subscription	data	reaching	the	client	could	be	as	old	as	1	second	plus	network	time.	We	could	improve	this	by
reducing	the	polling	interval	on	the	server	or	by	setting	up	a	webhook—the	most	efficient	and	lowest-latency	solution,
in	which	the	only	delay	would	be	network	time:	GitHub	would	immediately	notify	our	server	of	the	change,	and	the
server	would	immediately	send	the	subscription	update	over	the	WebSocket	to	the	client.

The	equivalent	query	using		graphql()		is:

const	withData	=	graphql(STARS_QUERY,	{

		props:	({	data:	{	githubStars,	loading,	subscribeToMore	}	})	=>	({

				githubStars,

				loading,

				subscribeToMore

		})

})

Lists

Chapter	6:	React

78

https://github.com/GraphQLGuide/guide/compare/2_0.2.0...3_0.2.0
https://github.com/GraphQLGuide/guide

If	you’re	jumping	in	here,		git	checkout	3_0.2.0		(tag	3_0.2.0,	or	compare	3...4)

See	the	Listing	reviews	section	for	another	example	of	querying	a	list	of	data.

Next	let’s	get	to	the	heart	of	our	app—the	stuff	below	the	header!	We’ll	want	to	reserve	most	of	the	space	for	the	book
content,	since	there’s	a	lot	of	it,	and	reading	it	is	the	purpose	of	the	app	 .	But	let’s	put	a	thin	sidebar	on	the	left	for
the	table	of	contents	so	that	readers	can	easily	navigate	between	sections.

To	begin,	we	replace	the		<p>		in		<App>		with	the	two	new	sections	of	the	page:

	src/components/App.js	

import	TableOfContents	from	'./TableOfContents'

import	Section	from	'./Section'

...

<div	className="App">

		<header	className="App-header">

				<StarCount	/>

				

				<h1	className="App-title">The	GraphQL	Guide</h1>

		</header>

		<TableOfContents	/>

		<Section	/>

</div>

We	call	the	second	component		Section		because	it	will	display	a	single	section	of	a	chapter	at	a	time.	Let’s	think
about	the	loading	state	first—we’ll	be	fetching	the	table	of	contents	and	the	section	content	from	the	API.	We	could	do
a	loading	spinner,	but	a	nicer	alternative	when	we’re	waiting	for	text	to	load	is	a	loading	skeleton—an	animated	gray
bar	placed	where	the	text	will	appear.	Let’s	put	a	few	bars	in	both	components:

	src/components/Section.js	

import	React	from	'react'

import	Skeleton	from	'react-loading-skeleton'

const	Section	=	({	loading	=	true	})	=>	(

		<section	className="Section">

				<div	className="Section-header-wrapper">

						<header	className="Section-header">

								<h1>Title</h1>

								<h2>Subtitle</h2>

						</header>

				</div>

				<div	className="Section-content">

						{loading	?	<Skeleton	count={7}	/>	:	null}

				</div>

		</section>

)

export	default	Section

	<Section>		isn’t	being	passed	a		loading		prop	yet,	since	we	haven’t	used	the		graphql()		function	to	attach	a	query	to
the	component	yet,	but	we	can	give		loading		a	default	value	of		true		for	now	so	that	we	can	work	with	it.		count={7}	
will	give	us	7	gray	bars,	representing	7	lines	of	text.	Now	for	the	sidebar:

	src/components/TableOfContents.js	

import	React	from	'react'

import	Skeleton	from	'react-loading-skeleton'

const	TableOfContents	=	({	loading	=	true	})	=>	{

		return	(

				<nav	className="TableOfContents">

						{loading	?	(

Chapter	6:	React

79

https://github.com/GraphQLGuide/guide/tree/3_0.2.0
https://github.com/GraphQLGuide/guide/compare/3_0.2.0...4_0.2.0
https://github.com/GraphQLGuide/guide/compare/3_0.2.0...4_0.2.0
https://github.com/GraphQLGuide/guide/blob/4_0.2.0/src/components/Section.js
https://github.com/GraphQLGuide/guide/blob/4_0.2.0/src/components/TableOfContents.js

								<div>

										<h1>

												<Skeleton	/>

										</h1>

										<Skeleton	count={4}	/>

								</div>

)	:	null}

				</nav>

)

}

export	default	TableOfContents

	<Skeleton>		picks	up	the	surrounding	font	size,	so	we’ll	see	a	larger	gray	line	(in	place	of	a	chapter	title)	and	then	4
smaller	lines	(in	place	of	section	titles):

Now	let’s	construct	the	query	for	the	data	we	need	to	display	in		TableOfContents	.	We	can	explore	the	Guide	API’s
schema	in	GraphQL	Playground,	an	IDE	for	writing	GraphQL	queries.	For	instance,	here	we’re	querying	for		{
githubStars	}	:

Playground:		query	{	githubStars	}	

On	the	left	side	we	have	the	GraphQL	document,	and	when	we	click	the	play	button	(or		command-return),	we	see	the
response	on	the	right:

Chapter	6:	React

80

https://graphqlbin.com/VO1qTg

Now	let’s	delete		githubStars	,	and	with	our	cursor	in	between	the		query		braces,	we	hit		control-space		to	bring	up
query	suggestions:

The	one	we	want	is		chapters	.	Now	we	can	add	an	inner	set	of	braces	(the	selection	set	on		chapters),	move	our
cursor	inside,	and	hit		control-space		again	to	see	the	available	fields	of	a		Chapter		(which	is	the	type	that		chapters	
returns):

query	{

		chapters	{

		}

}

Chapter	6:	React

81

https://dev-blog.apollodata.com/the-anatomy-of-a-graphql-query-6dffa9e9e747

We’ll	want	to	display	the		title		and	the		sections	,	and	we	do	the	same	to	see	which	fields	of	a		Section		we	want.

query	{

		chapters	{

				title

				sections	{

				}

		}

}

And	we	see		title	,	which	we	will	want	for	each	section.

We	will	also	want	to	display	the	chapter	and	section	numbers,	so	let’s	add	those	as	well.	Our	whole	query	is:

query	{

		chapters	{

				number

				title

				sections	{

						number

						title

				}

		}

}

We	can	see	what	the	data	looks	like	by	hitting	the	play	button	or		command-return	.

Chapter	6:	React

82

To	attach	the	query	to	our	component,	we	give	it	a	name,		ChapterQuery	,	put	it	inside	a		gql		template	string,	and	use
	graphql()		to	specify	what	props	our	HOC	will	give	to		TableOfContents	:

	src/components/TableOfContents.js	

import	{	graphql	}	from	'react-apollo'

import	gql	from	'graphql-tag'

const	CHAPTER_QUERY	=	gql`

		query	ChapterQuery	{

				chapters	{

						id

						number

						title

						sections	{

								id

								number

								title

						}

				}

		}

`

const	withData	=	graphql(CHAPTER_QUERY,	{

		props:	({	data:	{	chapters,	loading	}	})	=>	({

				chapters,

				loading

		})

})

export	default	withData(TableOfContents)

And	now	that	our	component	will	be	getting	props,	we	add	prop	types:

	src/components/TableOfContents.js	

import	PropTypes	from	'prop-types'

TableOfContents.propTypes	=	{

		chapters:	PropTypes.arrayOf(

				PropTypes.shape({

						id:	PropTypes.number.isRequired,

Chapter	6:	React

83

https://github.com/GraphQLGuide/guide/blob/4_0.2.0/src/components/TableOfContents.js
https://github.com/GraphQLGuide/guide/blob/4_0.2.0/src/components/TableOfContents.js

						number:	PropTypes.number,

						title:	PropTypes.string.isRequired,

						sections:	PropTypes.arrayOf(

								PropTypes.shape({

										id:	PropTypes.number.isRequired,

										number:	PropTypes.number.isRequired,

										title:	PropTypes.string

								}).isRequired

).isRequired

				}).isRequired

),

		loading:	PropTypes.bool.isRequired

}

We	know	that	we	can	add		.isRequired		to	the	fields	of		chapters		and		sections		because	we	can	see	in	the	Guide
schema	that	they’re	non-null—in	Playground,	we	click	"SCHEMA"	on	the	right	to	open	up	the	schema	tab,	click	on
	chapters	,	and	notice	that,	for	example		title:	String!		has	an	exclamation	mark,	so	it	will	always	have	a	value.

This	means	that	when	our	component	is	provided		chapters	,	the		title		field	will	always	be	present.

Playground:		query	{	chapters	{	number	title	sections	{	number	title	}	}	}	

Note	that		chapters:	PropTypes.arrayOf(...)		doesn’t	have	an		.isRequired	,	because	initially,	while		loading		is
	true	,		chapters		is		undefined	.

Next	let’s	use	the	new	props	our	component	gets.	We	can	remove	the	default		true		value	for		loading		and	add
	chapters	.	For	each	chapter	we	display	a	list	of	links	to	each	section:

	src/components/TableOfContents.js	

import	{	NavLink	}	from	'react-router-dom'

import	classNames	from	'classnames'

import	{	slugify,	withHyphens	}	from	'../lib/helpers'

const	LoadingSkeleton	=	()	=>	(

		<div>

				<h1>

						<Skeleton	/>

				</h1>

				<Skeleton	count={4}	/>

Chapter	6:	React

84

https://graphqlbin.com/lOR8i2
https://github.com/GraphQLGuide/guide/blob/4_0.2.0/src/components/TableOfContents.js

		</div>

)

const	TableOfContents	=	({	chapters,	loading	})	=>	(

		<nav	className="TableOfContents">

				{loading	?	(

						<LoadingSkeleton	/>

)	:	(

						<ul	className="TableOfContents-chapters">

								{chapters.map(chapter	=>	{

										const	chapterIsNumbered	=	chapter.number	!==	null

										return	(

												<li

														className={classNames({	numbered:	chapterIsNumbered	})}

														key={chapter.id}

												>

														<NavLink

																to={{

																		pathname:	slugify(chapter),

																		state:	{	chapter,	section:	chapter.sections[0]	}

																}}

																className="TableOfContents-chapter-link"

																activeClassName="active"

																isActive={(match,	location)	=>	{

																		const	rootPath	=	location.pathname.split('/')[1]

																		return	rootPath.includes(withHyphens(chapter.title))

																}}

														>

																{chapterIsNumbered	&&	(

																		

																				{chapter.number}

																		

)}

																{chapter.title}

														</NavLink>

														{chapterIsNumbered	&&	(

																<ul	className="TableOfContents-sections">

																		{chapter.sections.map(section	=>	(

																				<li	key={section.number}>

																						<NavLink

																								to={{

																										pathname:	slugify(chapter,	section),

																										state:	{	chapter,	section	}

																								}}

																								className="TableOfContents-section-link"

																								activeClassName="active"

																						>

																								{section.title}

																						</NavLink>

																				

))}

																

)}

												

)

								})}

						

)}

		</nav>

)

Okay,	so	that	was	a	lot	of	code	 .	We’ve	got	an	outer	list	of	chapters,	and	for	each	chapter	we	have	an	inner	list	of
sections.	We’ve	got	React	Router		<NavLink>	s	that	add	an		"active"		class	when	the	URL	matches	the	link	path.	And
we	use	the		slugify()		helper	to	generate	paths.

	src/lib/helpers.js	

export	const	withHyphens	=	string	=>	string.replace(/	/g,	'-')

//	generate	paths	of	the	form:

//	`/Forward`

//	`/Preface`

Chapter	6:	React

85

https://github.com/GraphQLGuide/guide/blob/4_0.2.0/src/lib/helpers.js

//	`/1-Understanding-GraphQL-through-REST/1-Introduction`

export	const	slugify	=	(chapter,	section)	=>	{

		if	(!section)	{

				if	(chapter.sections.length)	{

						//	default	to	the	first	section

						section	=	chapter.sections[0]

				}	else	{

						return	'/'	+	withHyphens(chapter.title)

				}

		}

		const	chapterSlug	=	chapter.number	+	'-'	+	withHyphens(chapter.title)

		const	sectionSlug	=	section.number	+	'-'	+	withHyphens(section.title)

		return	`/${chapterSlug}/${sectionSlug}`

}

Also,	to	get	React	Router	working,	we	need	to	wrap	our	app	in		<BrowserRouter>	:

	src/index.js	

import	{	BrowserRouter	}	from	'react-router-dom'

ReactDOM.render(

		<BrowserRouter>

				<ApolloProvider	client={client}>

						<App	/>

				</ApolloProvider>

		</BrowserRouter>,

		document.getElementById('root')

)

With	all	this	JSX	code,	we’re	starting	to	feel	the	best	thing	about	GraphQL	on	the	client	side—that	most	of	the	coding
is	in	the	view	instead	of	in	data	fetching.	We	don’t	have	a	bunch	of	REST	endpoint	fetching	and	parsing	and	caching
and	passing	code;	instead,	we	attach	simple	query	strings	to	the	components	that	need	them,	and	we	get	the	data	in
the	props.

Now	we	should	see	the	table	of	contents	on	the	left	side	of	the	page,	and	we	can	click	between	sections	and	see	the
active	links	and	path	changing:

Chapter	6:	React

86

https://github.com/GraphQLGuide/guide/compare/3_0.2.0...4_0.2.0

Query	variables
If	you’re	jumping	in	here,		git	checkout	4_0.2.0		(tag	4_0.2.0,	or	compare	4...5)

Let’s	fill	in	the	book	content	next!	Say	we	have	a	section	ID,	like		'intro'	—how	do	we	get	the	content?	Let’s	look	in
Playground	to	find	the	right	query	to	make:

Playground:		query	{	}	

There’s	a		section(id:	String!)		query	that	returns	a		Section		object,	which	has	a		content		field.	So	let’s	try	it	out:

Playground:		query	{	section(id:	"intro")	{	content	}}	

Next	we	add	the	query	to	our	component:

	src/components/Section.js	

import	PropTypes	from	'prop-types'

import	{	graphql	}	from	'react-apollo'

import	gql	from	'graphql-tag'

Section.propTypes	=	{

		section:	PropTypes.shape({

				content:	PropTypes.string.isRequired

		}),

		loading:	PropTypes.bool.isRequired

}

const	SECTION_QUERY	=	gql`

		query	SectionContent	{

Chapter	6:	React

87

https://github.com/GraphQLGuide/guide/tree/4_0.2.0
https://github.com/GraphQLGuide/guide/compare/4_0.2.0...5_0.2.0
https://www.graphqlbin.com/qj7PuX
https://graphqlbin.com/pg8rsQ
https://github.com/GraphQLGuide/guide/compare/4_0.2.0...5_0.2.0

				section(id:	"intro")	{

						content

				}

		}

`

const	withData	=	graphql(SECTION_QUERY,	{

		props:	({	data:	{	section,	loading	}	})	=>	({	section,	loading	})

})

export	default	withData(Section)

Now	our	component	should	get	a		section		prop	that	will	have	the	same		content		string	that	we	saw	returned	in
Playground,	and	we	can	use	it.

src/components/Section.js`

const	Section	=	({	loading,	section	})	=>	(

		<section	className="Section">

				<div	className="Section-header-wrapper">

						<header	className="Section-header">

								<h1>Title</h1>

								<h2>Subtitle</h2>

						</header>

				</div>

				<div	className="Section-content">

						{loading	?	<Skeleton	count={7}	/>	:	section.content}

				</div>

		</section>

)

We	can	read	the	book!	 	But	we’ve	got	a	hard-coded	section	ID—let’s	turn	our		section(id)		argument	into	a
variable:

	src/components/Section.js	

const	SECTION_QUERY	=	gql`

		query	SectionContent($id:	String!)	{

				section(id:	$id)	{

						content

				}

		}

`

const	withData	=	graphql(SECTION_QUERY,	{

		options:	{	variables:	{	id:	'1-1'	}	},

		props:	({	data:	{	section	}	})	=>	({	section	})

})

	query	SectionContent($id:	String!)	{	:	We	declare	at	the	top	that	the		SectionContent		query	takes	a	variable
	$id	,	a	required		String	.
	section(id:	$id)	{	:	We	replace	our	string	literal		"1-1"		with	the	variable		$id	.
	options:	{	variables:	{	id:	'1-1'	}	}	:	We	tell		graphql()		to	pass	an		id		variable	to	the	query.

Now	passing	the	variable	to	the	query	is	working,	but	we	still	have		'1-1'		hard-coded.	Where	do	we	get	the	section
ID	from?	Back	in		TableOfContents	,	we	gave	a		to		prop	to	our		NavLinks	:

<NavLink

		to={{

				pathname:	slugify(chapter,	section),

				state:	{	chapter,	section	}

		}}

Chapter	6:	React

88

https://github.com/GraphQLGuide/guide/compare/4_0.2.0...5_0.2.0
https://github.com/GraphQLGuide/guide/compare/4_0.2.0...5_0.2.0

The		pathname		is	the	equivalent	of	an	anchor	tag’s		href		attribute,	but		state		is	part	of	the	HTML5	session	history
management_method).	We	can	access	it	at		window.location.state	,	but	we	also	want	our	components	to	react	to
changes,	so	we	want	it	as	a	prop.	The	best	way	to	use	browser	history	state	with		react-router		is	with	the
	withRouter		HOC,	which	provides	our	component	with	a		location		prop,	which	has	a		.state		property.		graphql()	’s
	options		can	have	a	function	value	instead	of	our	current		variables		object	literal—the	function	takes	the	props	and
returns	the	variables:

	src/components/Section.js	

import	{	withRouter	}	from	'react-router'

const	withData	=	graphql(SECTION_QUERY,	{

		options:	({	location:	{	state:	{	section:	{	id	}	}	}	})	=>	({

				variables:	{	id	}

		}),

		props:	({	data:	{	section,	loading	}	})	=>	({

				sectionContent:	section	&&	section.content,

				loading

		})

})

export	default	withRouter(withData(Section))

If	you	get		TypeError:	Cannot	read	property	'section'	of	undefined	,	skip	ahead	to	the	next	section	to	see	the
solution.

Our	options	function	gets	the	section	ID	from	the		location		prop	and	returns	it	as	the	query	variable.	In	our		props	
function,	we	change	from	passing		section		to	just	passing	a		sectionContent		string	(so	that	the	name	doesn’t	conflict
with	also	getting	the		section		from		location.state).	Also,	our	HOC	order	matters—we	have	to	put		withRouter()	
outside	of		withData()		so	that		graphql()		gets	the		location		prop	to	give	to	the	options	function.

Let’s	fill	in	our	component	with	our	newly	available	data:

	src/components/Section.js	

const	Section	=	({

		loading,

		sectionContent,

		location:	{	state:	{	chapter,	section	}	}

})	=>	(

		<section	className="Section">

				<div	className="Section-header-wrapper">

						<header	className="Section-header">

								{chapter.number	!==	null	?	(

										<div>

												<h1>{section.title}</h1>

												<h2>

														{'Chapter	'	+	chapter.number}

														

														{'Section	'	+	section.number}

												</h2>

										</div>

)	:	(

										<h1>{chapter.title}</h1>

)}

						</header>

				</div>

				<div	className="Section-content">

						{loading	?	<Skeleton	count={7}	/>	:	sectionContent}

				</div>

		</section>

)

Section.PropTypes	=	{

		sectionContent:	PropTypes.string,

		location:	PropTypes.object.isRequired,

		loading:	PropTypes.bool.isRequired

Chapter	6:	React

89

https://developer.mozilla.org/en-US/docs/Web/API/History_API#The_pushState(
https://github.com/GraphQLGuide/guide/compare/4_0.2.0...5_0.2.0
https://github.com/GraphQLGuide/guide/compare/4_0.2.0...5_0.2.0

}

We	can	see	this	working	by	clicking	a	different	section	in	the	table	of	contents.	The	path	will	change	and	a	new		state	
will	be	set,	which		withRouter		will	provide	to		Section	,	triggering	a	re-render,	and	the	book	content	on	the	right	will
update.

Skipping	queries
If	you’re	jumping	in	here,		git	checkout	5_0.2.0		(tag	5_0.2.0,	or	compare	5...6)

If	you’ve	kept	your	development	browser	tab	open	during	this	section,	then	everything	has	worked	smoothly	for	you.
But	when	we	open	a	new	tab,	we	find	a	bug:

	TypeError:	Cannot	read	property	'section'	of	undefined	

const	withData	=	graphql(SECTION_QUERY,	{

		options:	({	location:	{	state:	{	section:	{	id	}	}	}	})	=>	({

It	looks	like		location.state		is	undefined!	 	Which	makes	sense,	because	in	a	new	tab,	we	haven’t	yet	clicked	a
	<NavLink>	,	so	the	state	hasn’t	been	set.	If	we	don’t	have	the	state,	how	do	we	get	the	section	ID	so	that	we	can
query	for	the	right	content?	The	only	information	we	have	on	first	page	load	is	the	path,	so	we	have	to	parse	it.
	location.pathname		will	always	be	defined,	so	we	can		deslugify()		it:

	src/lib/helpers.js	

//	parse	a	path:

//	/Introduction

//	->	{	chapterTitle:	'Introduction'	}

//

//	/1-Understanding-GraphQL-through-REST/1-Introduction

//	->	{	chapterNumber:	1,	sectionNumber:	1	}

export	const	deslugify	=	path	=>	{

		const	[,	chapterSlug,	sectionSlug]	=	path.split('/')

		const	chapterIsNumbered	=	!!sectionSlug

		return	chapterIsNumbered

				?	{

								chapterNumber:	parseInt(chapterSlug.split('-')[0],	10),

								sectionNumber:	parseInt(sectionSlug.split('-')[0],	10)

						}

				:	{	chapterTitle:	chapterSlug	}

Chapter	6:	React

90

https://github.com/GraphQLGuide/guide/tree/5_0.2.0
https://github.com/GraphQLGuide/guide/compare/5_0.2.0...6_0.2.0
http://localhost:3000/introduction
https://reacttraining.com/react-router/web/api/location
https://github.com/GraphQLGuide/guide/compare/5_0.2.0...6_0.2.0

}

Now	let’s	look	at	Playground	to	figure	out	which	two	queries	we	can	use,	given	either	the	chapter	title	or	the	chapter
and	section	numbers:

Playground:		query	{	}	

We	can	use	the		chapterByTitle		and		chapterByNumber		root	query	fields	along	with	a		Chapter	’s		section		field	with	a
	number:	Int!		argument.	(Any	field,	not	just	root	fields,	can	have	arguments.)

	src/components/Section.js	

const	SECTION_BY_ID_QUERY	=	gql`

		query	SectionContent($id:	String!)	{

				section(id:	$id)	{

						content

				}

		}

`

const	SECTION_BY_CHAPTER_TITLE_QUERY	=	gql`

		query	SectionByChapterTitle($title:	String!)	{

				chapterByTitle(title:	$title)	{

						title

						section(number:	1)	{

								content

						}

				}

		}

`

const	SECTION_BY_NUMBER_QUERY	=	gql`

		query	SectionByChapterTitle($chapterNumber:	Int!,	$sectionNumber:	Int!)	{

				chapterByNumber(number:	$chapterNumber)	{

						number

						section(number:	$sectionNumber)	{

								number

								title

								content

						}

				}

		}

`

For		chapterByTitle	,	all	the	non-numbered	chapters	only	have	a	single	section	and	are	numbered		0		and	title-less.
For	the		chapterByNumber	,	we	need	the	section	title	in	addition	to	the	contents,	because	we	display	it	at	the	top	of	the
component,	and	we	no	longer	get	it	from		location.state	.

Section	HOCs

Now	we	need	to	figure	out	which	query	to	use!	We	could	make	our	own	HOC	that	took	in		location		from		withRouter	
and	chose	which	query	to	use,	like	this:

export	default	withRouter(withCorrectQuery(Section))

But	let’s	instead	try	out	the		skip		feature	of		graphql()	.	It	allows	you	to	provide	a	function	that	calculates	from	the
props	whether	to	perform	the	query.	For	instance,	we	don’t	want	to	use	the		SECTION_BY_ID_QUERY		when	there’s	no
state:

const	withSectionById	=	graphql(SECTION_BY_ID_QUERY,	{

		skip:	({	location	})	=>	!location.state,

Chapter	6:	React

91

https://www.graphqlbin.com/qj7PuX
https://github.com/GraphQLGuide/guide/compare/5_0.2.0...6_0.2.0
https://www.apollographql.com/docs/react/basics/queries.html#graphql-skip

Let’s	also	standardize	the	props	so	that		Section		always	gets	a		section		and	a		chapter	,	with		section.content	:

	src/components/Section.js	

const	SECTION_BY_ID_QUERY	=	gql`

		query	SectionContent($id:	String!)	{

				section(id:	$id)	{

						content

				}

		}

`

const	withSectionById	=	graphql(SECTION_BY_ID_QUERY,	{

		skip:	({	location	})	=>	!location.state,

		options:	({	location:	{	state	}	})	=>	({

				variables:	{	id:	state	&&	state.section.id	}

		}),

		props:	({

				ownProps:	{	location:	{	state	}	},

				data:	{	section,	loading	}

		})	=>	({

				section:	{

						...state.section,

						content:	section	&&	section.content

				},

				chapter:	state.chapter,

				loading

		})

})

In	our		props		function,	we	have	access	to		withRouter()	’s	props	under	the		ownProps		argument.	We	add	the	section
content	we	get	from	the	query	result	to		ownProps.locations.state.section	.	We	need	to	guard	against		data.section	
being		undefined		(section	&&	section.content)	because	it	will	be	when		loading		is	true.

Let’s	make	an	HOC	for	the	next	query:

	src/components/Section.js	

import	{	deslugify	}	from	'../lib/helpers'

const	SECTION_BY_CHAPTER_TITLE_QUERY	=	gql`

		query	SectionByChapterTitle($title:	String!)	{

				chapterByTitle(title:	$title)	{

						title

						section(number:	1)	{

								content

						}

				}

		}

`

const	withSectionByChapterTitle	=	graphql(SECTION_BY_CHAPTER_TITLE_QUERY,	{

		skip:	({	location	})	=>

				location.state	||	!deslugify(location.pathname).chapterTitle,

		options:	({	location:	{	pathname	}	})	=>	({

				variables:	{	title:	deslugify(pathname).chapterTitle	}

		}),

		props:	({	data:	{	chapterByTitle,	loading	}	})	=>	({

				section:	chapterByTitle	&&	chapterByTitle.section,

				chapter:	{

						...chapterByTitle,

						number:	null

				},

				loading

		})

})

Chapter	6:	React

92

We	want	to	skip	over	this	query	if	we	either	have	state	(in	which	case	we	used		SECTION_BY_ID_QUERY)	or	if	the	path
doesn’t	have	a		chapterTitle		(in	which	case	we’ll	pass	on	to	the	next	HOC/query).	We	get	the		title		query	variable
from	the	path,	and	for	props,		section		comes	from	the	query	results.	We	didn’t	need	the		number		field	in	our	query
because	we	know	that	these	chapters	aren’t	numbered.

On	to	the	next	query	 :

	src/components/Section.js	

const	SECTION_BY_NUMBER_QUERY	=	gql`

		query	SectionByNumber($chapterNumber:	Int!,	$sectionNumber:	Int!)	{

				chapterByNumber(number:	$chapterNumber)	{

						number

						section(number:	$sectionNumber)	{

								number

								title

								content

						}

				}

		}

`

const	withSectionByNumber	=	graphql(SECTION_BY_NUMBER_QUERY,	{

		skip:	({	location	})	=>

				location.state	||	!deslugify(location.pathname).chapterNumber,

		options:	({	location:	{	pathname	}	})	=>	({	variables:	deslugify(pathname)	}),

		props:	({	data:	{	chapterByNumber,	loading	}	})	=>	({

				section:	chapterByNumber	&&	chapterByNumber.section,

				chapter:	chapterByNumber,

				loading

		})

})

	options	:	What	we	get	from	deslugify	in	this	case	matches	our	query	variable	format	({	chapterNumber:	1,
sectionNumber:	1}).
	props	:	We	get	all	the	props	we	need	from	the	query	results.

We	can	combine	all	of	our	HOCs	with:

export	default	withRouter(

		withSectionById(withSectionByChapterTitle(withSectionByNumber(Section)))

)

	but	that’s	hard	to	read!	We	can	do	the	same	with		react-apollo	’s		compose()		(equivalent	to		compose()		from
recompose	or	redux):

import	{	graphql,	compose	}	from	'react-apollo'

export	default	compose(

		withRouter,

		withSectionById,

		withSectionByChapterTitle,

		withSectionByNumber

)(Section)

All	four	HOCs	get	composed	together	to	a	single	HOC,	which	is	applied	to		Section	.	Here’s	the	more	verbose	version
of	the	same	thing:

const	withRouterAndData	=	compose(

		withRouter,

		withSectionById,

		withSectionByChapterTitle,

		withSectionByNumber

)

Chapter	6:	React

93

export	default	withRouterAndData(Section)

And	we	set	our		PropTypes	:

Section.propTypes	=	{

		section:	PropTypes.shape({

				title:	PropTypes.string,

				number:	PropTypes.number,

				content:	PropTypes.string

		}),

		chapter:	PropTypes.shape({

				title:	PropTypes.string,

				number:	PropTypes.number

		}).isRequired,

		loading:	PropTypes.bool.isRequired

}

Now	when	we	open	/introduction	or	/1-Understanding-GraphQL-through-REST/1-Introduction	in	new	tabs,	we	get	the
right	section	content	instead	of	an	error!	

In	Apollo	devtools,	we	can	look	at	the	active	queries	on	the	page,	which	will	let	us	see	which	of	our	three		graphql()	
HOCs	is	being	used:

The	first	image	is	from	a	tab	in	which	we’ve	been	navigating	with	the	table	of	contents,	and	it	uses	the
	SectionContent		query.	The	second	image	is	from	a	newly	opened	tab,	and	it	uses		SectionByNumber	.

Section	Query

Chapter	6:	React

94

http://localhost:3000/introduction
http://localhost:3000/1-Understanding-GraphQL-through-REST/1-Introduction

As	we	learned	in		StarCount.js	,	a	benefit	to	the		<Query>		component	is	being	able	to	dynamically	decide	on	a	query
to	use.	That’s	a	perfect	fit	for		Section.js	,	where	we’re	deciding	on	one	of	three	queries	to	use.	Here	are	our	three
HOCs	replaced	with	a		<Query>	:

	src/components/Section.js	

import	{	Query	}	from	'react-apollo'

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		const	page	=	deslugify(pathname)

		let	query,	variables

		if	(state)	{

				query	=	SECTION_BY_ID_QUERY

				variables	=	{	id:	state.section.id	}

		}	else	if	(page.chapterTitle)	{

				query	=	SECTION_BY_CHAPTER_TITLE_QUERY

				variables	=	{	title:	page.chapterTitle	}

		}	else	if	(page.chapterNumber)	{

				query	=	SECTION_BY_NUMBER_QUERY

				variables	=	page

		}

		return	(

				<Query	query={query}	variables={variables}>

						{({	data,	loading	})	=>	{

								let	props

								if	(data.section)	{

										props	=	{

												section:	{

														...state.section,

														content:	data.section.content

												},

												chapter:	state.chapter,

												loading

										}

								}	else	if	(data.chapterByTitle)	{

										props	=	{

												section:	data.chapterByTitle.section,

												chapter:	{

														...data.chapterByTitle,

														number:	null

												},

												loading

										}

								}	else	if	(data.chapterByNumber)	{

										props	=	{

												section:	data.chapterByNumber.section,

												chapter:	data.chapterByNumber,

												loading

										}

								}	else	{

										props	=	{	loading	}

								}

								return	<Section	{...props}	/>

						}}

				</Query>

)

}

export	default	withRouter(SectionWithData)

First	we	decide,	based	on	the		location		prop,	which		query		and		variables		to	use.	Then	inside	the	render	prop,
	data		will	have	either	a		section	,		chapterByTitle	,	or		chapterByNumber		attribute,	depending	on	which	query	was
used.	Based	on	which	data	is	returned,	we	can	construct	the	right	props	for		<Section>	.	Let’s	compare	to	the	HOC
solution:

Chapter	6:	React

95

https://github.com/GraphQLGuide/guide/compare/5_0.2.0...6_0.2.0

const	withSectionById	=	graphql(SECTION_BY_ID_QUERY,	{

		skip:	({	location	})	=>	!location.state,

		options:	({	location:	{	state	}	})	=>	({

				variables:	{	id:	state	&&	state.section.id	}

		}),

		props:	({

				ownProps:	{	location:	{	state	}	},

				data:	{	section,	loading	}

		})	=>	({

				section:	{

						...state.section,

						content:	section	&&	section.content

				},

				chapter:	state.chapter,

				loading

		})

})

const	withSectionByChapterTitle	=	graphql(SECTION_BY_CHAPTER_TITLE_QUERY,	{

		skip:	({	location	})	=>

				location.state	||	!deslugify(location.pathname).chapterTitle,

		options:	({	location:	{	pathname	}	})	=>	({

				variables:	{	title:	deslugify(pathname).chapterTitle	}

		}),

		props:	({	data:	{	chapterByTitle,	loading	}	})	=>	({

				section:	chapterByTitle	&&	chapterByTitle.section,

				chapter:	{

						...chapterByTitle,

						number:	null

				},

				loading

		})

})

const	withSectionByNumber	=	graphql(SECTION_BY_NUMBER_QUERY,	{

		skip:	({	location	})	=>

				location.state	||	!deslugify(location.pathname).chapterNumber,

		options:	({	location:	{	pathname	}	})	=>	({	variables:	deslugify(pathname)	}),

		props:	({	data:	{	chapterByNumber,	loading	}	})	=>	({

				section:	chapterByNumber	&&	chapterByNumber.section,

				chapter:	chapterByNumber,

				loading

		})

})

export	default	compose(

		withRouter,

		withSectionById,

		withSectionByChapterTitle,

		withSectionByNumber

)(Section)

Instead	of	an	if-else	statement,	the	HOC	solution	uses		skip	.	It	also	has	to	call		deslugify		and	deconstruct
arguments	more	often.	A	downside	of	our		<Query>		implementation	is	that	the	query	and	variables	are	separated	from
the	prop	creation,	but	we	can	fix	that	by	using	a	function:

import	get	from	'lodash/get'

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		const	page	=	deslugify(pathname)

		let	query,	variables,	createProps

		if	(state)	{

				query	=	SECTION_BY_ID_QUERY

				variables	=	{	id:	state.section.id	}

				createProps	=	({	data,	loading	})	=>	({

						section:	{

								...state.section,

								content:	get(data,	'section.content')

						},

Chapter	6:	React

96

						chapter:	state.chapter,

						loading

				})

		}	else	if	(page.chapterTitle)	{

				query	=	SECTION_BY_CHAPTER_TITLE_QUERY

				variables	=	{	title:	page.chapterTitle	}

				createProps	=	({	data,	loading	})	=>	({

						section:	get(data,	'chapterByTitle.section'),

						chapter:	{

								...data.chapterByTitle,

								number:	null

						},

						loading

				})

		}	else	if	(page.chapterNumber)	{

				query	=	SECTION_BY_NUMBER_QUERY

				variables	=	page

				createProps	=	({	data,	loading	})	=>	({

						section:	get(data,	'chapterByNumber.section'),

						chapter:	data.chapterByNumber,

						loading

				})

		}

		return	(

				<Query	query={query}	variables={variables}>

						{queryInfo	=>	<Section	{...createProps(queryInfo)}	/>}

				</Query>

)

}

export	default	withRouter(SectionWithData)

Since,	for	example,		data.section		might	be	undefined,	we	have	to	either	go	back	to	guarding	(data.section	&&
data.section.content)	or	use		lodash/get	.

Let’s	go	with	the		<Query>		version,	since	the	logic	of	which	query	should	be	used	is	more	clear,	and	being	able	to
easily	understand	what’s	happening	(from	the	point	of	view	of	a	teammate	reading	for	the	first	time,	or—let’s	be
honest—ourselves	looking	back	at	it	a	month	later)	is	one	of	the	most	important	factors	of	code	quality.

More	routing

Before	we	move	on	to	the	authentication	section,	we’ve	got	another	bug!	You	may	very	well	have	already	noticed	this
one—we	can’t	visit	the	root	URL	localhost:3000/	 .		TypeError:	Cannot	read	property	'number'	of	undefined		is
coming	from	our		chapter.number	!==	null		check	in		Section	,	and		chapter		is	undefined	because	none	of	our	HOCs
was	able	to	fetch	the	chapter.	That’s	because	on	the	root,	there’s	neither	history	state	nor	a	path	to		deslugify()	.
While	it	would	be	nice	to	redirect	from	the	root	to	whichever	section	the	user	was	last	reading,	for	now	let’s	just
redirect	to	the	first	chapter.

So	far,	we	haven’t	defined	any	routes—	Section		just	changes	what	data	it	shows	based	on	the	path.	We	can	create	a
root	route	that	redirects	to		/Preface	.

	src/components/App.js	

import	{	Switch,	Route,	Redirect	}	from	'react-router'

const	Book	=	()	=>	(

		<div>

				<TableOfContents	/>

				<Section	/>

		</div>

)

class	App	extends	Component	{

		render()	{

				return	(

Chapter	6:	React

97

http://localhost:3000/
https://github.com/GraphQLGuide/guide/compare/5_0.2.0...6_0.2.0

						<div	className="App">

								<header	className="App-header">

										<StarCount	/>

										

										<h1	className="App-title">The	GraphQL	Guide</h1>

								</header>

								<Switch>

										<Route	exact	path="/"	render={()	=>	<Redirect	to="/Preface"	/>}	/>

										<Route	component={Book}	/>

								</Switch>

						</div>

)

		}

}

Assuming	we	always	want	to	keep	our	header	on	the	page	regardless	of	which	route	we’re	on,	we	put	the		<Route>	s
below	the	header	in	lieu	of		<TableOfContents	/>		and		<Section	/>	,	which	we	move	to	a	new		Book		component.
	<Switch>		renders	the	first		<Route>		that	matches.	The	first	route	matches	only		/		and	redirects,	and	the	second
route	matches	everything	else	and	displays		Book	.

This	begs	the	question,	"What	happens	when	the	second	route	matches		/aMistypedChapterTitle	"?	We	get	another
error!	This	time	it’s		TypeError:	Cannot	read	property	'content'	of	null		from		Section		trying	to	display
	section.content	,	because	we	failed	at	fetching		section	.	Let’s	have		Section		display	a	404	message,	and	let’s
refactor,	since	the	double	ternary	operator	is	already	hard	to	read.

	src/components/Section.js	

const	Section	=	({	loading,	section,	chapter	})	=>	{

		let	headerContent	=	null,

				sectionContent	=	null

		if	(loading)	{

				headerContent	=	(

						<h1>

								<Skeleton	/>

						</h1>

)

				sectionContent	=	<Skeleton	count={7}	/>

		}	else	if	(!section)	{

				headerContent	=	<h1>ܷ 	404	page	not	found</h1>

		}	else	{

				if	(chapter.number	!==	null)	{

						headerContent	=	(

								<div>

										<h1>{section.title}</h1>

										<h2>

												{'Chapter	'	+	chapter.number}

												

												{'Section	'	+	section.number}

										</h2>

								</div>

)

				}	else	{

						headerContent	=	<h1>{chapter.title}</h1>

				}

				sectionContent	=	section.content

		}

		return	(

				<section	className="Section">

						<div	className="Section-header-wrapper">

								<header	className="Section-header">{headerContent}</header>

						</div>

						<div	className="Section-content">{sectionContent}</div>

				</section>

)

}

Chapter	6:	React

98

https://github.com/GraphQLGuide/guide/compare/5_0.2.0...6_0.2.0

First	we	check	if	we’re	loading	(in	which	case	we	don’t	know	whether	we’ve	failed	to	find		section		yet),	then	we	check
if	we	didn’t	find	section.	If	neither	of	those	cases	applied,	then	we	would	render	the	title	and	content.

Now	we	should	be	able	to	both:

go	to	the	root	localhost:3000/	and	get	redirected
go	to	/notachapter	and	see	the	404	message:

Authentication
Section	contents:

Logging	in
Resetting

Logging	in
Background:	Authentication

If	you’re	jumping	in	here,		git	checkout	6_0.2.0		(tag	6_0.2.0,	or	compare	6...7)

We’ll	have	noticed	by	now	that	we’re	not	getting	the	entire	section	content	from	the	Guide	API,	and	that’s	because
we’re	not	logged	in.	When	we	bought	the	book,	we	created	a	user	account	that	was	associated	with	our	purchase.	In
order	to	see	the	full	content,	we	need	to	log	in	with	that	account.

Authentication	is	important	and	complex	enough	that	we	rarely	want	to	code	it	ourselves—we	probably	should	use	a
library	or	service.	For	node	backends,	the	most	common	library	is	passport.	We’ll	instead	use	a	service—Auth0—for
ease	of	integration.	There	are	pros	and	cons	to	signed	tokens	vs.	sessions	and	localStorage	vs.	cookies,	but	we’ll	go
with	the	most	straightforward	option	for	Auth0	integration:	tokens	stored	in	localStorage.	They	have	a	number	of
authentication	methods	(called	"Connections"	in	Auth0	or	"strategies"	in	Passport),	including	email/password,
passwordless	(SMS	one-time	codes,	email	magic	login	links,	and/or	TouchID),	and	Social	OAuth	providers.	While
Auth0	makes	it	easy	to	provide	multiple	options,	for	simplicity’s	sake,	we’ll	just	provide	GitHub	OAuth—all	of	our	users
are	developers,	and	they’re	likely	already	logged	into	their	GitHub	account	on	most	of	their	browsers,	so	the	login
process	should	be	really	easy.	If	we	were	building	for	a	different	market,	we	might	prefer	passwordless	instead.

Chapter	6:	React

99

http://localhost:3000/
http://localhost:3000/notachapter
https://github.com/GraphQLGuide/guide/tree/6_0.2.0
https://github.com/GraphQLGuide/guide/compare/6_0.2.0...7_0.2.0
http://www.passportjs.org/
https://auth0.com/
https://auth0.com/passwordless

A	common	login	sequence	is	this:	the	user	clicks	a	login	button,	which	redirects	them	to	the	GitHub	OAuth	page,	and
after	they	do	GitHub	login	(if	needed),	they	authorize	our	app	and	are	redirected	back	to	our	site.	One	UX	drawback	of
this	sequence	is	that	at	the	end,	the	user	has	to	wait	for	our	site	to	load,	and	without	some	work,	they	won’t	be	taken
to	the	exact	page	and	scroll	position	they	were	at	before.	A	good	alternative	is	to	open	a	popup	(or	a	new	tab	on
mobile)	where	the	user	can	do	the	GitHub	steps.	When	they’re	done	authorizing,	the	popup	closes	and	returns	the
signed	token	to	the	app.	Then	we’ll	include	that	token	in	our	requests	to	the	server	so	the	server	will	know	who	the
user	is.

Let’s	think	about	what	UI	elements	we	want	related	to	the	login	and	the	user.	We	can	put	a	login	link	on	the	right	side
of	the	header,	which	will	open	the	GitHub	popup.	Once	the	user	is	logged	in,	we	can	show	their	GitHub	profile	photo
and	name	in	place	of	the	login	link,	and	if	they	click	their	name,	we	can	take	them	to	a	new		/me		route	that	shows
them	their	profile.	For	all	of	this,	we’ll	need	some	data	and	functions—the	user	data,	whether	the	user	data	is	loading,
and	login	and	logout	functions.	We	need	it	in	a	couple	of	different	places	in	the	app—in	the	header	and	in	a	route.
There	are	a	few	different	ways	to	get	information	to	any	place	in	the	app—one	is	to	render	an		<AppContainer>		instead
of		<App>		in		index.js	:

ReactDOM.render(

		<BrowserRouter>

				<ApolloProvider	client={client}>

						<AppContainer	/>

				</ApolloProvider>

		</BrowserRouter>,

		document.getElementById('root')

)

And	then	the		<AppContainer>		fetches	the	current	user	object	from	the	server	and	passes	it	to		<App>		along	with
login/logout	functions	and		loggingIn	—whether	the	app	is	in	the	process	of	logging	the	user	in:

class	AppContainer	extends	Component	{

		render()	{

				...

				return	(

						<App

								user={user}

								login={this.login}

								logout={this.logout}

								loggingIn={loading}

						/>

)

		}

}

Then		<App>		in	turn	passes	the	props	down	the	component	tree	to	children	and	grandchildren	who	need	them.	The
main	benefit	to	this	method	is	that	it’s	easy	to	test,	because	it’s	simple	to	mock	out	props.	However,	in	all	but	the
smallest	apps,	it	results	in	a	lot	of	prop	drilling	(passing	props	down	to	a	component’s	children’s	children’s	...	children).
That	can	get	tiresome	and	clutter	our	JSX	and	PropTypes.	Instead,	let’s	make		login()		and		logout()		global
functions	and	let’s	use		graphql()		to	create	a		withUser()		HOC	that	provides		user		and		loggingIn	.	Then	inside
components	that	deal	the	with	user,	we	can	import	and	use		login()	,		logout()	,	and		withUser()	.

Let’s	add	the	current	user’s	name	and	photo	to	our	header,	and	let’s	add	a	route	for	a	profile	page:

	src/components/App.js	

import	{	Link	}	from	'react-router-dom'

import	CurrentUser	from	'./CurrentUser'

import	Profile	from	'./Profile'

class	App	extends	Component	{

		render()	{

				return	(

Chapter	6:	React

100

https://github.com/GraphQLGuide/guide/compare/6_0.2.0...7_0.2.0

						<div	className="App">

								<header	className="App-header">

										<StarCount	/>

										<Link	className="App-home-link"	to="/">

												

												<h1	className="App-title">The	GraphQL	Guide</h1>

										</Link>

										<CurrentUser	/>

								</header>

								<Switch>

										<Route	exact	path="/"	render={()	=>	<Redirect	to="/Preface"	/>}	/>

										<Route	exact	path="/me"	component={Profile}	/>

										<Route	component={Book}	/>

								</Switch>

						</div>

)

		}

}

We	call	the	header	component		<CurrentUser>		because	that’s	what	it	will	usually	be	displaying	(it	will	sometimes
instead	have	a	"Sign	in"	button	or	a	spinner).	We	need	a	way	for	the	user	to	navigate	from		/me		to	the	rest	of	the	app,
so	we	wrap	the	header	image	and	title	in	a		<Link>		to	the	root		/	.	Later	we’ll	get	to	the	HOC	(lib/withUser.js)	and
the	login/logout	functions	(lib/auth.js),	but	for	now	let’s	assume	they	work	and	write		<CurrentUser>	:

	src/components/CurrentUser.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	{	Link	}	from	'react-router-dom'

import	{	withUser	}	from	'../lib/withUser'

import	{	login	}	from	'../lib/auth'

const	CurrentUser	=	({	user,	loggingIn	})	=>	{

		let	content

		if	(user)	{

				content	=	(

						<Link	to="/me"	className="User">

								

								{user.firstName}

						</Link>

)

		}	else	if	(loggingIn)	{

				content	=	<div	className="Spinner"	/>

		}	else	{

				content	=	<button	onClick={login}>Sign	in</button>

		}

		return	<div	className="CurrentUser">{content}</div>

}

CurrentUser.propTypes	=	{

		user:	PropTypes.shape({

				firstName:	PropTypes.string.isRequired,

				photo:	PropTypes.string.isRequired

		}),

		loggingIn:	PropTypes.bool.isRequired

}

export	default	withUser(CurrentUser)

This	one	is	straightforward	to	read.	If	there’s	no	user	and	the	user	isn’t	being	loaded,	then	we	have	a	“Sign	in”	button
that	calls		login()	.

Similarly,	in		<Profile>	,	we	might	show	a	loading	spinner	or	a	login	button.	Otherwise,	we	show	the	user’s	details	and
a	“Sign	out”	button:

	src/components/Profile.js	

Chapter	6:	React

101

https://github.com/GraphQLGuide/guide/blob/7_0.2.0/src/components/CurrentUser.js
https://github.com/GraphQLGuide/guide/blob/7_0.2.0/src/components/Profile.js

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	{	withUser	}	from	'../lib/withUser'

import	{	login,	logout	}	from	'../lib/auth'

const	Profile	=	({	user,	loggingIn	})	=>	{

		if	(loggingIn)	{

				return	(

						<main	className="Profile">

								<div	className="Spinner"	/>

						</main>

)

		}	else	if	(!user)	{

				return	(

						<main	className="Profile">

								<button	onClick={login}	className="Profile-login">

										Sign	in

								</button>

						</main>

)

		}	else	{

				return	(

						<main	className="Profile">

								<div	className="Profile-header-wrapper">

										<header	className="Profile-header">

												<h1>{user.name}</h1>

										</header>

								</div>

								<div	className="Profile-content">

										<dl>

												<dt>Email</dt>

												<dd>

														<code>{user.email}</code>

												</dd>

												<dt>Membership	level</dt>

												<dd>

														<code>{user.hasPurchased	||	'GUEST'}</code>

												</dd>

												<dt>OAuth	Github	account</dt>

												<dd>

														<a

																href="https://github.com/settings/applications"

																target="_blank"

																rel="noopener	noreferrer"

														>

																<code>{user.username}</code>

														

												</dd>

										</dl>

										<button	className="Profile-logout"	onClick={logout}>

												Sign	out

										</button>

								</div>

						</main>

)

		}

}

Profile.propTypes	=	{

		user:	PropTypes.shape({

				name:	PropTypes.string.isRequired,

				email:	PropTypes.string.isRequired,

				hasPurchased:	PropTypes.string

		}),

		loggingIn:	PropTypes.bool.isRequired

}

export	default	withUser(Profile)

Chapter	6:	React

102

And	now	to	write	our	authentication	logic!	First,	we	need	to	set	up	the	Auth0	client:

	src/lib/auth.js	

import	auth0	from	'auth0-js'

import	{

		initAuthHelpers,

		login	as	auth0Login,

		logout	as	auth0Logout

}	from	'auth0-helpers'

const	client	=	new	auth0.WebAuth({

		domain:	'graphql.auth0.com',

		clientID:	'8fErnZoF3hbzQ2AbMYu5xcS0aVNzQ0PC',

		responseType:	'token',

		audience:	'https://api.graphql.guide',

		scope:	'openid	profile	guide'

})

initAuthHelpers({

		client,

		usePopup:	true,

		authOptions:	{

				connection:	'github',

				owp:	true,

				popupOptions:	{	height:	623	}	//	make	tall	enough	for	content

		},

		checkSessionOptions:	{

				redirect_uri:	window.location.origin

		},

		onError:	e	=>	console.error(e)

})

Here	we’re	just	following	the	docs	for		auth0-js		and		auth0-helpers	.	Now		auth0Login()		and		auth0Logout()		should
be	configured	to	work	with	the	Guide’s	Auth0	account	system,	and	we	can	use	them:

	src/lib/auth.js	

export	const	login	=	()	=>	{

		auth0Login({

				onCompleted:	e	=>	{

						if	(e)	{

								console.error(e)

								return

						}

				}

		})

}

export	const	logout	=	()	=>	{

		auth0Logout()

}

You	might	be	wondering,	"But	what	do	the	login	and	logout	functions	actually	do?"		auth0Login()		opens	the	GitHub
auth	popup,	and	saves	the	resulting	token	in	localStorage.		auth0Logout()		removes	the	token	from	localStorage	and
ends	our	session	with	the	Auth0	server.	The	next	step	is	actually	using	the	token—whenever	we	communicate	with
the	server,	we	need	to	provide	it.	There’s	an	Apollo	Link	called		setContext		that	lets	us	set	headers	on	HTTP
requests,	and	we’ll	use	it	to	add	an		authorization		header	with	the	token.	While	we're	at	it,	let's	move	our	Apollo	client
creation	out	to	another	file:

	src/index.js	

import	{	apollo	}	from	'./lib/apollo'

ReactDOM.render(

		<BrowserRouter>

				<ApolloProvider	client={apollo}>

Chapter	6:	React

103

https://github.com/GraphQLGuide/guide/blob/7_0.2.0/src/lib/auth.js
https://www.npmjs.com/package/auth0-js
https://www.npmjs.com/package/auth0-helpers
https://github.com/GraphQLGuide/guide/blob/7_0.2.0/src/lib/auth.js
https://www.npmjs.com/package/apollo-link-context
https://github.com/GraphQLGuide/guide/compare/6_0.2.0...7_0.2.0

						<App	/>

				</ApolloProvider>

		</BrowserRouter>,

		document.getElementById('root')

)

	src/lib/apollo.js	

import	{	ApolloClient	}	from	'apollo-client'

import	{	InMemoryCache	}	from	'apollo-cache-inmemory'

import	{	split	}	from	'apollo-link'

import	{	WebSocketLink	}	from	'apollo-link-ws'

import	{	createHttpLink	}	from	'apollo-link-http'

import	{	getMainDefinition	}	from	'apollo-utilities'

import	{	setContext	}	from	'apollo-link-context'

import	{	getAuthToken	}	from	'auth0-helpers'

const	httpLink	=	createHttpLink({

		uri:	'https://api.graphql.guide/graphql'

})

const	authLink	=	setContext(async	(_,	{	headers	})	=>	{

		const	token	=	await	getAuthToken({

				doLoginIfTokenExpired:	true

		})

		if	(token)	{

				return	{

						headers:	{

								...headers,

								authorization:	`Bearer	${token}`

						}

				}

		}	else	{

				return	{	headers	}

		}

})

const	authedHttpLink	=	authLink.concat(httpLink)

const	wsLink	=	new	WebSocketLink({

		uri:	`wss://api.graphql.guide/subscriptions`,

		options:	{

				reconnect:	true

		}

})

const	link	=	split(

		({	query	})	=>	{

				const	{	kind,	operation	}	=	getMainDefinition(query)

				return	kind	===	'OperationDefinition'	&&	operation	===	'subscription'

		},

		wsLink,

		authedHttpLink

)

const	cache	=	new	InMemoryCache()

export	const	apollo	=	new	ApolloClient({	link,	cache	})

We	get	the	token	from		auth0-helpers		using		getAuthToken()	,	which	either	looks	it	up	in	localStorage,	or	if	it	has
expired,	opens	the	GitHub	auth	popup	again.	We	use		concat()		to	combine	our	new		authLink		with	the		httpLink	—
now	when	our	Apollo	client	sends	out	a	new	query	or	mutation,	it	will	first	go	through		authLink	,	which	will	set	the
header,	and	then	through		httpLink	,	which	will	put	it	in	an	HTTP	request	and	send	it	to	the	server.

The	last	piece	is	to	make	an	HOC	that	provides	the	current	user’s	data:

	src/lib/withUser.js	

Chapter	6:	React

104

https://github.com/GraphQLGuide/guide/compare/6_0.2.0...7_0.2.0
https://www.apollographql.com/docs/link/composition.html#additive
https://github.com/GraphQLGuide/guide/blob/7_0.2.0/src/lib/withUser.js

import	{	graphql	}	from	'react-apollo'

import	gql	from	'graphql-tag'

export	const	USER_QUERY	=	gql`

		query	UserQuery	{

				currentUser	{

						id

						firstName

						name

						username

						email

						photo

						hasPurchased

				}

		}

`

export	const	withUser	=	graphql(USER_QUERY,	{

		props:	({	data:	{	currentUser,	loading	}	})	=>	({

				user:	currentUser,

				loggingIn:	loading

		})

})

We	can	now	try	logging	in	with	our	Github	account.	Clicking	sign	in	opens	the	popup,	and	after	we	go	through	the
OAuth	dialog,	the	popup	closes.	But	then	nothing	else	happens.	The	“Sign	in”	link	is	still	there,	which	means
	withUser()		is	still	providing		user:	null		to		<CurrentUser>	.	If	we	reload,	it’ll	show	us	logged	in,	but	we	don’t	want	to
have	to	reload,	of	course.	This	issue	will	be	solved	in	the	next	section.

Resetting
If	you’re	jumping	in	here,		git	checkout	7_0.2.0		(tag	7_0.2.0,	or	compare	7...8)

Because	the	auth	token	is	included	in	every	request,	the	server	will	know	who	we	are	for	any	other	queries	and
mutations	we	send,	like	the	ones	for	the	section	content.	So	our	server	should	recognize	that	we	have	purchased	a
Guide	package	and	return	the	full	content	to	the	sections	that	are	included	in	our	package.	But	after	we	log	in,	the
section	content	is	still	cut	off	like	it	was	before.	Why	is	that?	Because	the	section	content	queries	haven’t	been
refetched!	We’re	still	showing	the	old	data	fetched	when	we	were	logged	out.	Now	what	do	we	do?

Apollo	does	have	a	refetch()	function	that	we	get	along	with	a	query’s	results.	It	would	be	a	pain	to	use	on	our	section
queries	because:	A)	there	are	3	of	them,	and	B)	we’d	have	to	figure	out	how	to	call	the		refetch()		functions	(which
would	be	inside		Section.js)	from		auth.js	.	So	let’s	take	a	different	path—telling	Apollo	to	refetch	all	the	queries	in
the	app.	Apollo	has	a		reFetchObservableQueries()		function,	which	takes	all	the	observable	queries	(queries	used	in	a
	<Query>		or		graphql()		to	provide	data	to	our	components)	and	re-sends	them	to	the	server.	Let’s	call	that:

	src/lib/auth.js	

import	{	apollo	}	from	'./apollo'

export	const	login	=	()	=>	{

		auth0Login({

				onCompleted:	e	=>	{

						if	(e)	{

								console.error(e)

								return

						}

						apollo.reFetchObservableQueries()

				}

		})

}

Chapter	6:	React

105

https://github.com/GraphQLGuide/guide/tree/7_0.2.0
https://github.com/GraphQLGuide/guide/compare/7_0.2.0...8_0.2.0
https://www.apollographql.com/docs/react/api/react-apollo.html#graphql-query-data-refetch
https://github.com/GraphQLGuide/guide/compare/7_0.2.0...8_0.2.0

Now	we’ve	got	login	working.	But	let’s	take	a	minute	to	think	about	query	efficiency.	We’re	using		withUser()		twice
right	now,	and	when	we	load		/me	,	it’s	used	two	places	on	the	page.	But	if	we	look	in	our	network	tab,	we	only	see
	UserQuery		sent	to	the	server	once!	This	is	an	example	of	Apollo’s	automatic	query	deduplication—when	we	ask	it	to
make	the	same	query	twice,	it’s	smart	enough	to	only	send	it	once	and	give	the	result	to	both	components.	However,
whenever	we	render	new	components	that	use		withUser()		(for	instance,	when	we	navigate	from		/Preface		to		/me),
it’s	treated	as	a	separate	query	and	not	deduplicated.	But	we	don’t	need	to	re-send	it	to	the	server—the	user’s	name,
photo,	etc.	isn’t	likely	to	change.	Luckily,	it	isn’t!	The	default	fetchPolicy	for	queries	is		cache-first	,	which	means	if	the
query	result	is	already	in	the	cache,	Apollo	loads	the	data	from	the	cache.	If	we	were	dealing	with	a	type	of	data	that
was	more	likely	to	change,	we	could	set	the		fetchPolicy		to		cache-and-network	,	which	first	loads	data	from	the
cache,	but	at	the	same	time	sends	the	query	to	the	server,	and	will	update	the	component	if	the	server	result	is
different	from	the	cache	result.	We	would	set		fetchPolicy		like	this:

export	const	withUser	=	graphql(USER_QUERY,	{

		options:	{	fetchPolicy:	'cache-and-network'	},

So	our	queries	update	on	login,	but	what	about	logout?	There	may	be	private	data	in	the	store,	so	the	method	we
want	is		resetStore()	,	which	first	clears	the	store	and	then	refetches	observable	queries:

	src/lib/auth.js	

export	const	logout	=	()	=>	{

		auth0Logout()

		apollo.resetStore()

}

Now	when	we	log	in	and	out,	the	full	section	content	should	appear	and	disappear.

Mutating
Section	contents:

First	mutation
Listing	reviews
Optimistic	updates
Arbitrary	updates
Creating	reviews
Using	fragments
Deleting
Error	handling
Editing	reviews

First	mutation
If	you’re	jumping	in	here,		git	checkout	8_0.2.0		(tag	8_0.2.0,	or	compare	8...9)

We	haven’t	yet	changed	any	of	the	data	in	the	Guide’s	database	(just	the	star	count	in	GitHub’s	database).	When	we
want	to	change	data	(or	more	broadly,	trigger	side	effects),	we	need	to	send	a	mutation	to	the	server.	Let’s	start	with
something	simple—at	the	bottom	of	a		<Section>	,	let’s	add	the	count	of	how	many	times	the	current	section	has	been
viewed.	Then	we	can	increment	the	count	whenever	it’s	viewed.

First	we	add	the		views		field	to	each	of	our	three	section	queries.	Here’s	the	first	one:

	src/components/Section.js	

Chapter	6:	React

106

https://www.apollographql.com/docs/react/advanced/network-layer.html#query-deduplication
https://www.apollographql.com/docs/react/api/react-apollo.html#graphql-config-options-fetchPolicy
https://www.apollographql.com/docs/react/api/apollo-client.html#ApolloClient.resetStore
https://github.com/GraphQLGuide/guide/compare/7_0.2.0...8_0.2.0
https://github.com/GraphQLGuide/guide/tree/8_0.2.0
https://github.com/GraphQLGuide/guide/compare/8_0.2.0...9_0.2.0
https://github.com/GraphQLGuide/guide/compare/8_0.2.0...9_0.2.0

const	SECTION_BY_ID_QUERY	=	gql`

		query	SectionContent($id:	String!)	{

				section(id:	$id)	{

						id

						content

						views

				}

		}

`

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		const	page	=	deslugify(pathname)

		let	query,	variables,	createProps

		if	(state)	{

				query	=	SECTION_BY_ID_QUERY

				variables	=	{	id:	state.section.id	}

				createProps	=	({	data,	loading	})	=>	({

						section:	{

								...state.section,

								content:	get(data,	'section.content'),

								views:	get(data,	'section.views')

						},

						chapter:	state.chapter,

						loading

				})

		}	...

In	addition	to		views	,	we	have	to	add		id		to	the	query’s	selection	set	so	that	the		Section		gets	normalized	correctly.
Also,	for	this	query,	we	need	to	add		get(data,	'section.views')		to		createProps()	.	We	don’t	have	to	modify	the	other
	createProps()		functions,	as	they	include	the	whole	section	instead	of	putting	it	together	from	different	places.

Next	we	display	the	new	data:

	src/components/Section.js	

		let	headerContent	=	null,

				sectionContent	=	null,

				footerContent	=	null

		if	(loading)	{

				...

		}	else	if	(!section)	{

				...

		}	else	{

				...

				sectionContent	=	section.content

				footerContent	=	`Viewed	${section.views.toLocaleString()}	times`

		}

		return	(

				<section	className="Section">

						...

						<footer>{footerContent}</footer>

				</section>

)

Chapter	6:	React

107

https://github.com/GraphQLGuide/guide/compare/8_0.2.0...9_0.2.0

Now	look	for	the	mutation	we	need	in	Playground—we	need	the	name,	arguments,	and	return	type.

Playground:		mutation	{	}	

And	we	write	out	the	mutation	string	just	like	we	write	queries:

	src/components/Section.js	

const	VIEWED_SECTION_MUTATION	=	gql`

		mutation	ViewedSection($id:	String!)	{

				viewedSection(id:	$id)	{

						id

						views

				}

		}

`

Like	in	the	queries,	we	need	the		id		field	so	that	Apollo	knows	which		Section		is	being	returned	in	the	mutation
response.	Now	the	response’s		views		field	will	update	the	normalized		Section		object	in	the	Apollo	store,	which	will
update	any	component	queries	that	select	that	field.	Those	queries	will	pass	the	updated	info	to	the	render	prop—in
this	case,		withSectionById()		will	pass	a	new		data.section		argument	to	the	render	prop.	We’ll	be	able	to	see	this	in
action	in	a	bit.

The	mutation	HOC	is	simpler	than	our	query	HOCs,	since	we	don’t	have	props	to	pass	down:

	src/components/Section.js	

import	{	graphql	}	from	'react-apollo'

const	SectionWithMutation	=	graphql(VIEWED_SECTION_MUTATION,	{

		name:	'viewedSection'

})(Section)

Chapter	6:	React

108

https://graphqlbin.com/JZ8QCy

...

				<Query	query={query}	variables={variables}>

						{queryInfo	=>	<SectionWithMutation	{...createProps(queryInfo)}	/>}

				</Query>

For	mutations,		graphql()		creates	an	HOC	that	provides	a	single	prop	function,	which	we’re	naming		viewedSection	.
We	want	to	call	it	whenever	a	section	is	viewed,	so	inside		componentDidMount()		and		componentDidUpdate()	.	In	order	to
get	lifecycle	methods,	we	need	to	convert	our	functional	component	into	a	class:

	src/components/Section.js	

class	Section	extends	Component	{

		viewedSection	=	id	=>	{

				if	(!id)	{

						return

				}

				this.timeoutID	=	setTimeout(()	=>	{

						this.props.viewedSection({

								variables:	{	id	}

						})

				},	2000)

		}

		componentDidMount()	{

				this.viewedSection(get(this,	'props.section.id'))

		}

		componentWillUnmount()	{

				clearTimeout(this.timeoutID)

		}

		componentDidUpdate(prevProps)	{

				const	{	id	}	=	this.props.section

				const	sectionChanged	=	get(prevProps,	'section.id')	!==	id

				if	(sectionChanged)	{

						this.viewedSection(id)

				}

		}

		render()	{	...	}

}

Section.propTypes	=	{

		...

		viewedSection:	PropTypes.func.isRequired

}

We	give		this.props.viewedSection()		the	section	ID	mutation	variable.	We	put	it	in	a	timeout	so	that	we	have	time	to
scroll	down	to	the	bottom	of	the	section	to	see	the	count	change	(End	key	or	Cmd-:arrow_down:	on	Mac).	And	we
clear	the	timeout	on	unmount	(because	if	we	navigate	away,	for	example	to	our	profile,	and	our	timeout	still	fires,	it
would	call	a	mutation	provided	by	a		<Mutation>		component	that	no	longer	existed,	and	React	would	throw	an	error).

We	also	need	to	only	trigger	the	mutation	when	the	section	changed.	When	the	mutation	result	arrives	and	updates
the	Apollo	store,		<Section>		is	going	to	be	given	the	updated		section		prop,	so		componentDidUpdate()		will	be	called
again.	And	if	it	always	called		viewedSection()	,	we’d	be	in	an	infinite	loop.	(Read:	author	Loren	was	stuck	in	an	infinite
loop	 .)

	gif:	Infinite	prop-updating	loop

Chapter	6:	React

109

https://reactjs.org/docs/react-component.html#componentdidmount
https://reactjs.org/docs/react-component.html#componentdidupdate
https://github.com/GraphQLGuide/guide/compare/8_0.2.0...9_0.2.0
http://res.cloudinary.com/graphql/guide/infinite-loop.gif

We	should	now	be	able	to	see	the	count	change	at	the	bottom	of	the	page	when	we	switch	between	sections.

There	is	also	a	render	prop	API	for	mutations.	Let’s	see	what	that	looks	like:

	src/components/Section.js	

import	{	Mutation	}	from	'react-apollo'

...

				<Query	query={query}	variables={variables}>

						{queryInfo	=>	(

								<Mutation	mutation={VIEWED_SECTION_MUTATION}>

										{viewedSection	=>	(

												<Section

														{...createProps(queryInfo)}

														viewedSection={viewedSection}

												/>

)}

								</Mutation>

)}

				</Query>

The	render	prop	is	given	the	mutation	function,	and	we	pass	it	to		<Section>	.	We	begin	to	see	here	how	the
indentation	level	can	balloon	when	a	component	needs	multiple	queries	and	mutations—we	add	2+	levels	per
operation	(only	2	if	we	use	implicit-return	arrow	functions,	3+	for	functions	with	blocks).

Listing	reviews
If	you’re	jumping	in	here,		git	checkout	9_0.2.0		(tag	9_0.2.0,	or	compare	9...10)

Before	we	get	to	more	advanced	mutations,	we	need	more	stuff	to	work	with!	Let’s	make	a	new	page	that	lists	book
reviews,	and	then	in	the	next	section,	we	can	implement	features	that	require	mutations:	favoriting	reviews,	creating
new	reviews,	and	editing	and	deleting	our	own	reviews.

Let’s	start	out	by	adding	a	link	to	the	bottom	of	the	table	of	contents:

	src/components/TableOfContents.js	

const	TableOfContents	=	({	chapters,	loading	})	=>	(

		<nav	className="TableOfContents">									

				...

								

										<NavLink	className="TableOfContents-reviews-link"	to="/reviews">

												Reviews

										</NavLink>

								

						

)}

		</nav>

)

And	we	can	add	the	new	route	with	another		<Switch>	:

	src/components/App.js	

const	Book	=	()	=>	(

		<div>

				<TableOfContents	/>

				<Switch>

						<Route	exact	path="/reviews"	component={Reviews}	/>

						<Route	component={Section}	/>

				</Switch>

		</div>

)

Chapter	6:	React

110

https://github.com/GraphQLGuide/guide/compare/8_0.2.0...9_0.2.0
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/block
https://github.com/GraphQLGuide/guide/tree/9_0.2.0
https://github.com/GraphQLGuide/guide/compare/9_0.2.0...10_0.2.0
https://github.com/GraphQLGuide/guide/compare/9_0.2.0...10_0.2.0
https://github.com/GraphQLGuide/guide/compare/9_0.2.0...10_0.2.0

Our		<Reviews>		component	is	going	to	need	some	data!	We	know	how	to	do	that	now.	Let’s	search	through	the
schema	for	the	right	query:

Playground:		query	{	}	

We	find	the		reviews		root	query	field,	and	since	fetching	them	all	might	be	a	lot	of	data,	let’s	use	the		limit	
argument.

And	for	each	review,	we	want	to	display	the	author’s	name,	photo,	and	a	link	to	their	GitHub,	so	we	need:

	src/components/Reviews.js	

const	REVIEWS_QUERY	=	gql`

		query	ReviewsQuery	{

				reviews(limit:	20)	{

						id

						text

						stars

						createdAt

						favorited

						author	{

								id

								name

								photo

								username

						}

				}

		}

`

As	before,	we	will	use		graphql()		to	get		reviews		and		loading		passed	as	props,	and	it	should	have	a	similar
structure	to		<Section>	:

	src/components/Reviews.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	{	graphql	}	from	'react-apollo'

import	gql	from	'graphql-tag'

Chapter	6:	React

111

https://www.graphqlbin.com/qj7PuX
https://github.com/GraphQLGuide/guide/blob/10_0.2.0/src/components/Reviews.js
https://github.com/GraphQLGuide/guide/blob/10_0.2.0/src/components/Reviews.js

import	Review	from	'./Review'

const	Reviews	=	({	reviews,	loading	})	=>	(

		<main	className="Reviews	mui-fixed">

				<div	className="Reviews-header-wrapper">

						<header	className="Reviews-header">

								<h1>Reviews</h1>

						</header>

				</div>

				<div	className="Reviews-content">

						{loading	?	(

								<div	className="Spinner"	/>

)	:	(

								reviews.map(review	=>	<Review	key={review.id}	review={review}	/>)

)}

				</div>

		</main>

)

Reviews.propTypes	=	{

		reviews:	PropTypes.arrayOf(PropTypes.object),

		loading:	PropTypes.bool.isRequired

}

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		props:	({	data:	{	reviews,	loading	}	})	=>	({	reviews,	loading	})

})

export	default	withReviews(Reviews)

We	can	be	vague	here	with		reviews:	PropTypes.arrayOf(PropTypes.object)		since	we’re	not	using	individual
	review		objects	in	this	component.	In		<Review>	,	we’ll	list	out	the		review		fields	used	with	a		PropTypes.shape	.

Next	up	is	the		<Review>		component.	So	far	we’ve	mostly	been	using	plain	HTML	tags	and	CSS	classes	for	styling.
For	many	components	of	an	app,	it’s	easier	to	use	a	library	instead	of	building	and	styling	them	ourselves.	The	most
popular	React	component	library	right	now	is	Material-UI,	based	on	Google’s	design	system.

Here	are	some	of	the	other	major	React	component	libraries.

We	can	explore	their	component	demos	to	find	components	we	want	to	use	to	make	up	a		<Review>	,	and	we	can
browse	the	material	icons	listing.	Let’s	put	each	review	on	a	Card,	with	an	Avatar	for	the	author’s	photo,	a	MoreVert
and	Menu	for	editing	and	deleting,	and	a	more	prominent	FavoriteBorder	as	a	bottom	action:

	src/components/Reviews.js	

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

import	{

		Card,

		CardHeader,

		CardContent,

		CardActions,

		IconButton,

		Typography,

		Avatar,

		Menu,

		MenuItem

}	from	'@material-ui/core'

import	{

		MoreVert,

		Favorite,

		FavoriteBorder,

		Star,

		StarBorder

}	from	'@material-ui/icons'

import	distanceInWordsToNow	from	'date-fns/distance_in_words_to_now'

import	times	from	'lodash/times'

const	StarRating	=	({	rating	})	=>	(

Chapter	6:	React

112

http://www.material-ui.com/
https://material.io/guidelines/material-design/introduction.html
https://blog.bitsrc.io/11-react-component-libraries-you-should-know-178eb1dd6aa4
https://material.io/icons/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/avatars/
https://material.io/tools/icons/?icon=more_vert&style=baseline
https://material-ui.com/demos/menus/
https://material.io/tools/icons/?icon=favorite_border&style=baseline
https://github.com/GraphQLGuide/guide/blob/10_0.2.0/src/components/Reviews.js

		<div>

				{times(rating,	i	=>	(

						<Star	key={i}	/>

))}

				{times(5	-	rating,	i	=>	(

						<StarBorder	key={i}	/>

))}

		</div>

)

class	Review	extends	Component	{

		state	=	{

				anchorEl:	null

		}

		openMenu	=	event	=>	{

				this.setState({	anchorEl:	event.currentTarget	})

		}

		closeMenu	=	()	=>	{

				this.setState({	anchorEl:	null	})

		}

		edit	=	()	=>	{

				this.closeMenu()

		}

		delete	=	()	=>	{

				this.closeMenu()

		}

		toggleFavorite	=	()	=>	{}

		render()	{

				const	{

						review:	{	text,	stars,	createdAt,	favorited,	author	}

				}	=	this.props

				const	linkToProfile	=	child	=>	(

						<a

								href={`https://github.com/${author.username}`}

								target="_blank"

								rel="noopener	noreferrer"

						>

								{child}

						

)

				return	(

						<div>

								<Card	className="Review">

										<CardHeader

												avatar={linkToProfile(

														<Avatar	alt={author.name}	src={author.photo}	/>

)}

												action={

														<IconButton	onClick={this.openMenu}>

																<MoreVert	/>

														</IconButton>

												}

												title={linkToProfile(author.name)}

												subheader={stars	&&	<StarRating	rating={stars}	/>}

										/>

										<CardContent>

												<Typography	component="p">{text}</Typography>

										</CardContent>

										<CardActions>

												<Typography	className="Review-created">

														{distanceInWordsToNow(createdAt)}	ago

												</Typography>

												<div	className="Review-spacer"	/>

												<IconButton	onClick={this.toggleFavorite}>

														{favorited	?	<Favorite	/>	:	<FavoriteBorder	/>}

												</IconButton>

Chapter	6:	React

113

										</CardActions>

								</Card>

								<Menu

										anchorEl={this.state.anchorEl}

										open={Boolean(this.state.anchorEl)}

										onClose={this.closeMenu}

								>

										<MenuItem	onClick={this.edit}>Edit</MenuItem>

										<MenuItem	onClick={this.delete}>Delete</MenuItem>

								</Menu>

						</div>

)

		}

}

Review.propTypes	=	{

		review:	PropTypes.shape({

				id:	PropTypes.string.isRequired,

				text:	PropTypes.string.isRequired,

				stars:	PropTypes.number,

				createdAt:	PropTypes.number.isRequired,

				favorited:	PropTypes.bool,

				author:	PropTypes.shape({

						name:	PropTypes.string.isRequired,

						photo:	PropTypes.string.isRequired,

						username:	PropTypes.string.isRequired

				})

		}).isRequired

}

export	default	Review

The		MoreVert		button	controls	whether	the		Menu		is	open	and	where	it	is	placed	(or	"anchored").	Also,	in	the
	propTypes	,	we	list	out	all	the	fields	of		review		that	we	use	in		<Review>	.

We	should	now	see	a	list	of	the	20	most	recent	reviews!	

Optimistic	updates
If	you’re	jumping	in	here,		git	checkout	10_0.2.0		(tag	10_0.2.0,	or	compare	10...11)

Optimistic	UI	is	when	the	client	acts	as	if	a	user	action	has	immediate	effect	instead	of	waiting	for	a	response	from	the
server.	For	example,	normally	if	the	user	adds	a	comment	to	a	blog	post,	the	client	sends	the	mutation	to	the	server,
and	when	the	server	responds	with	the	new	comment,	the	client	adds	it	to	the	store,	which	updates	the	comment
query	results,	which	re-renders	the	page.	Optimistic	UI	is	when	the	client	sends	the	mutation	to	the	server	and
updates	the	store	at	the	same	time,	not	waiting	for	a	response—optimistically	assuming	that	the	comment	will	be
successfully	saved	to	the	database.

Let’s	write	a	simple	example	of	an	optimistic	update	for	favoriting	or	unfavoriting	a	review.	We	can	find	in	the
Playground	a	mutation	called		favoriteReview		which	takes	the	review	ID	and	whether	the	user	is	favoriting	or
unfavoriting.	First	we	write	the	mutation	and	wrap		<Review>		with	it:

	src/components/Review.js	

import	gql	from	'graphql-tag'

import	{	graphql	}	from	'react-apollo'

Review.propTypes	=	{

		review:	...

		favorite:	PropTypes.func.isRequired

}

const	FAVORITE_REVIEW_MUTATION	=	gql`

		mutation	FavoriteReview($id:	ObjID!,	$favorite:	Boolean!)	{

				favoriteReview(id:	$id,	favorite:	$favorite)	{

Chapter	6:	React

114

https://github.com/GraphQLGuide/guide/tree/10_0.2.0
https://github.com/GraphQLGuide/guide/compare/10_0.2.0...11_0.2.0
https://api.graphql.guide/play
https://github.com/GraphQLGuide/guide/compare/10_0.2.0...11_0.2.0

						favorited

				}

		}

`

export	default	graphql(FAVORITE_REVIEW_MUTATION,	{	name:	'favorite'	})(Review)

Then	we	have	access	to	a		favorite		prop,	which	we	use	in	the	button	click	handler:

		toggleFavorite	=	()	=>	{

				const	{	review:	{	id,	favorited	}	}	=	this.props

				this.props.favorite({

						variables:	{

								id,

								favorite:	!favorited

						}

				})

		}

Now	when	we	click	a	review’s	heart	outline	icon,	it	should	change	to	the	filled-in	icon...	right?	 	But	nothing’s
happening.	Let’s	investigate	with	Apollo	devtools.	We	can	open	it	on	our	page	to	the	Mutations	section.	Then	when	we
click	a	favorite	button,		FavoriteReview		shows	up	in	the	Mutation	log.	So	we	know	the	mutation	is	getting	called.	And
when	we	click	on	the	log	entry,	we	can	see	that	the	argument	variables	are	given	correctly:

So	maybe	the	issue	is	with	the	server’s	response?	Let’s	look	at	that	in	the	Network	tab.	In	the	Name	section	on	the
left,	scroll	down	to	the	bottom,	and	when	we	click	the	favorite	button	again,	a	new	entry	should	appear.	When	we	click
on	that,	we	should	see	the	Headers	tab,	which	at	the	top	says	it	was	an	HTTP	POST	to
	https://api.graphql.guide/graphql		(which	is	the	case	for	all	of	our	GraphQL	queries	and	mutations).	It	also	says	the
response	status	code	was	"200	OK",	so	we	know	the	server	responded	without	an	error.	If	we	scroll	to	the	bottom,
we’ll	see	the	Request	Payload,	which	has		operationName:	FavoriteReview		and	the	correct	mutation	string	and
variables.	Now	if	we	switch	to	the	Response	tab,	we	see:

	{"data":{"favoriteReview":{"favorited":true,"__typename":"Review"}}}	

Chapter	6:	React

115

The	server	is	giving	us	the	correct	response,	so	it	looks	like	the	mutation	did	succeed.	Let’s	try	reloading	the	page.
Now	we	see	that	the	review	did	get	favorited.	Why	was	the	UI	not	updating?	We	forgot	to	include		id		in	the	response
selection	set,	so	Apollo	didn’t	know	which	part	of	the	store	to	update	with		favorited:	true	.	When	we	add		id	,	it
works:

const	FAVORITE_REVIEW_MUTATION	=	gql`

		mutation	FavoriteReview($id:	ObjID!,	$favorite:	Boolean!)	{

				favoriteReview(id:	$id,	favorite:	$favorite)	{

						id

						favorited

				}

		}

`

gif:	Delayed	favoriting

While	it	works	now,	we	can	probably	notice	a	delay	between	when	we	click	the	heart	and	when	it	changes.	If	we	don’t,
we	can	switch	from	"Online"	to	"Fast	3G"	in	the	dropdown	on	the	far	right	top	of	the	Network	tab	in	Chrome	devtools
(which	simulates	the	higher	latency	of	mobile	networks),	and	we’ll	notice	a	two-second	delay	before	the	icon	changes.
Users	of	our	app	who	are	on	mobile	or	on	computers	far	away	from	our	servers	notice	the	delay.	Let’s	improve	their
experience	by	updating	the	icon	immediately.	(In	reality,	it	will	take	some	milliseconds	to	run	the	Apollo	and	React
code	and	paint	a	new	screen,	but	the	delay	should	be	imperceptible.)

We	can	provide	an		optimisticResponse		to	our		favorite()		mutation:

	src/components/Review.js	

		toggleFavorite	=	()	=>	{

				const	{	review:	{	id,	favorited	}	}	=	this.props

				this.props.favorite({

						variables:	{

								id,

								favorite:	!favorited

						},

						optimisticResponse:	{

								favoriteReview:	{

										__typename:	'Review',

										id,

										favorited:	!favorited

								}

						}

				})

		}

	__typename		is	an	automatically	provided	field	for	the	type	being	returned.	We’re	mimicking	the	response	from	the
server,	which	we	saw	had		"__typename":"Review"	:

	{"data":{"favoriteReview":{"favorited":true,"__typename":"Review"}}}	

The	type	name,	along	with	the		id	,	will	allow	Apollo	to	figure	out	which	review	object	in	the	store	to	update	with	the
new		favorited		value.	Now	we	see	that	the	icon	updates	right	away,	even	when	we	set	the	network	speed	to	fast	or
slow	3G.

gif:	Optimistic	favoriting

We	may	find	it	helpful	to	decouple	our	presentational	components	from	our	data-fetching	logic.	Right	now		<Review>	
needs	to	know	how	to	construct	an		optimisticResponse		in	order	to	call	a	mutation.	We	can	make	the	separation
cleaner	by	taking	care	of	it	outside	the	component:

	src/components/Review.js	

const	withFavoriteMutation	=	graphql(FAVORITE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

Chapter	6:	React

116

http://res.cloudinary.com/graphql/guide/delayed-favoriting.gif
https://www.apollographql.com/docs/react/basics/mutations.html#graphql-mutation-options-optimisticResponse
https://github.com/GraphQLGuide/guide/compare/10_0.2.0...11_0.2.0
http://res.cloudinary.com/graphql/guide/optimistic-favoriting.gif
https://github.com/GraphQLGuide/guide/compare/10_0.2.0...11_0.2.0

				favorite:	(id,	favorite)	=>

						mutate({

								variables:	{	id,	favorite	},

								optimisticResponse:	{

										favoriteReview:	{

												__typename:	'Review',

												id,

												favorited:	favorite

										}

								}

						})

		})

})

export	default	withFavoriteMutation(Review)

As	we	did	with	our	queries,	we	can	use		props		to	control	what	props	are	given	to		<Review>	.	Here	we’re	giving	a
	favorite		function	that	just	takes	the	two	pieces	of	data	we	need	from	the	component,	and	then	calls	the	mutation
with	the		variables		and		optimisticResponse		objects.	Now	we	can	simplify		toggleFavorite	:

class	Review	extends	Component	{

		toggleFavorite	=	()	=>	{

				const	{	review:	{	id,	favorited	}	}	=	this.props

				this.props.favorite(id,	!favorited)

		}

		...

}

	Review		no	longer	needs	to	know	a	special	argument	format	for	a	mutation—it	just	gets	a	simple		favorite()		function
to	call.

In	the	next	section,	we’ll	implement	a	more	flexible	and	complex	form	of	optimistic	updating.

Arbitrary	updates
If	you’re	jumping	in	here,		git	checkout	11_0.2.0		(tag	11_0.2.0,	or	compare	11...12)

In	the	previous	section	(Optimistic	updating),	we	changed	the	Apollo	data	store	using		mutate()	’s		optimisticResponse	
option.	But	that	method	only	let	us	set	the	mutation	response—an	object	of	type		Review	.	Sometimes	we	need	to
update	different	parts	of	the	store.	For	our	next	piece	of	UI,	we’ll	need	to	update	the		User		object,	and	we’ll	do	so	with
some	new	functions—store.readQuery()	and	store.writeQuery().

In	the	header	of	the	Reviews	page,	let’s	add	the	total	count	of	favorited	reviews:

Chapter	6:	React

117

https://github.com/GraphQLGuide/guide/tree/11_0.2.0
https://github.com/GraphQLGuide/guide/compare/11_0.2.0...12_0.2.0
https://www.apollographql.com/docs/react/basics/caching.html#readquery
https://www.apollographql.com/docs/react/basics/caching.html#writequery-and-writefragment

First	we	need	to	think	about	how	to	get	the	count.	We	can’t	just	count	how	many	reviews	in	the	store	have		favorited:
true	,	because	we	only	have	the	most	recent	20.	And	fetching	all	the	reviews	from	the	server	would	be	a	lot	of	data	on
the	wire,	a	lot	of	memory	taken	up	on	the	client,	and	a	long	list	to	count	through.	Instead	let’s	fetch	the	current	user’s
	favoriteReviews		field.	When	we	want	to	know	more	about	the	current	user,	we	need	to	go	back	to	our		withUser()	
HOC	and	add	the	field	to	our		USER_QUERY	:

	src/lib/withUser.js	

const	USER_QUERY	=	gql`

		query	UserQuery	{

				currentUser	{

						...

						favoriteReviews	{

								id

						}

				}

		}

Since	we’re	just	counting	the	length,	we	don’t	need	many		Review		fields—just	the		id	.	We	get	the	data	to		<Reviews	>
using		withUser()	,	and	then	we	get	the	length	of	the		user.favoriteReviews		array	to	display	on	the	page:

	src/components/Reviews.js	

import	{	graphql,	compose	}	from	'react-apollo'

import	get	from	'lodash/get'

import	{	Favorite	}	from	'@material-ui/icons'

import	{	withUser	}	from	'../lib/withUser'

const	Reviews	=	({	reviews,	loading,	user	})	=>	{

		const	favoriteCount	=	get(user,	'favoriteReviews.length')

		return	(

				<main	className="Reviews	mui-fixed">

						<div	className="Reviews-header-wrapper">

								<header	className="Reviews-header">

										{favoriteCount	?	(

Chapter	6:	React

118

https://github.com/GraphQLGuide/guide/compare/11_0.2.0...12_0.2.0
https://github.com/GraphQLGuide/guide/compare/11_0.2.0...12_0.2.0

												<div	className="Reviews-favorite-count">

														<Favorite	/>

														{favoriteCount}

												</div>

)	:	null}

										<h1>Reviews</h1>

								</header>

				...

)

}

Reviews.propTypes	=	{

		...

		user:	PropTypes.shape({

				favoriteReviews:	PropTypes.arrayOf(

						PropTypes.shape({

								id:	PropTypes.string.isRequired

						})

)

		})

}

export	default	compose(

		withReviews,

		withUser

)(Reviews)

Now	if	we	have	a	non-zero	favorite	count,	we	should	see	it	in	the	Reviews	header.	When	we	favorite	reviews,	the
count	doesn’t	go	up	as	it	should.	We	have	to	reload	the	page	in	order	to	get	the	count	displayed	accurately	again—the
user’s		favoriteReviews		list	is	getting	updated	on	the	server,	but	not	on	the	client.	In	order	to	update	it	on	the	client,
we	add	another	option	to	our	mutation:		update	.

import	remove	from	'lodash/remove'

const	READ_USER_FAVORITES	=	gql`

		query	ReadUserFavorites	{

				currentUser	{

						id

						favoriteReviews	{

								id

						}

				}

		}

`

const	withFavoriteMutation	=	graphql(FAVORITE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

				favorite:	(id,	favorite)	=>

						mutate({

								variables:	{	id,	favorite	},

								optimisticResponse:	{

										favoriteReview:	{

												__typename:	'Review',

												id,

												favorited:	favorite

										}

								},

								update:	store	=>	{

										const	data	=	store.readQuery({	query:	READ_USER_FAVORITES	})

										if	(favorite)	{

												data.currentUser.favoriteReviews.push({	id,	__typename:	'Review'	})

										}	else	{

												remove(data.currentUser.favoriteReviews,	{	id	})

										}

										store.writeQuery({	query:	READ_USER_FAVORITES,	data	})

								}

						})

		})

})

Chapter	6:	React

119

https://www.apollographql.com/docs/react/basics/mutations.html#graphql-mutation-options-update

	update		is	given	a		DataProxy		object,	which	allows	us	to	read	and	write	data	from	and	to	the	store.	To	read	data,	we
write	a	query	for	the	data	we	want	to	change	(in	this	case		currentUser.favoriteReviews).	To	differentiate	between
queries	we	send	to	the	server	and	queries	we	write	just	for	reading	from	the	store,	we	start	the	name	with	"Read":
	ReadUserFavorites	.	We	give	the	query	to		store.readQuery()	,	and	we	get	back	the	data.	Then	we	modify	the	data
(either	adding	or	removing	a	bare-bones		Review		object	with	an		id		and		__typename).	Finally,	we	write	the	modified
data	back	to	the	store	with		store.writeQuery()	.

For	example,	if	we	started	out	with:

data	=	{

		currentUser:	{

				__typename:	'User',

				favoriteReviews:	[{

						__typename:	'Review',

						id:	'foo'

				}]

		}

}

and	we	favorited	a	review	with	ID		'bar'	,	then	we	would	write	this	data	object	back	to	the	store:

{

		currentUser:	{

				__typename:	'User',

				favoriteReviews:	[{

						__typename:	'Review',

						id:	'foo'

				},	{

						__typename:	'Review',

						id:	'bar'

				}]

		}

}

Then	Apollo	would	update		USER_QUERY	’s	user	prop,	which	would	be	passed	down	to		<Reviews>	,	which	would	find	a
new		user.favoriteReviews.length		value	and	re-render	the	component.	We	can	see	that	this	process	works	in	our
app:

gif:	Updating	favorite	count

In	the	next	section,	we’ll	write	an		update()		function	that	adds	an	item	to	a	list.	We	can	also	use		readQuery()		and
	writeQuery()		outside	of	a	mutation—we	can	wrap	any	component	in		withApollo()	,	and	then	inside	the	component
call,	for	instance:		this.props.client.writeQuery()	.

There	are	two	more	functions	we	can	use—	readFragment()		and		writeFragment()	.		readQuery		can	only	read	data
from	a	root	query	type	like		currentUser{	...	}		or		reviews(limit:	20){	...	}	.		readFragment		can	read	from	any
normalized	object	in	our	store	by	its	store	ID.

A	store	ID	is	the	identifier	Apollo	uses	to	normalize	objects.	By	default,	it	is		[__typename]:[id]	,	for	instance:
	Review:5a6676ec094bf236e215f488	.	We	can	see	these	IDs	on	the	left	of	the	Store	section	in	Apollo	devtools:

Chapter	6:	React

120

https://www.apollographql.com/docs/react/basics/caching.html#direct
https://www.apollographql.com/docs/react/basics/caching.html#readquery
https://www.apollographql.com/docs/react/basics/caching.html#writequery-and-writefragment
http://res.cloudinary.com/graphql/guide/updating-favorite-count.gif
https://www.apollographql.com/docs/react/basics/caching.html#readfragment
https://www.apollographql.com/docs/react/basics/caching.html#writequery-and-writefragment
https://www.apollographql.com/docs/react/basics/caching.html#normalization

On	the	left	is	the	store	IDs	of	all	objects	in	the	store.	There	are	reviews	with	their	random	IDs,	as	well	as	sections	with
store	IDs	like		Section:1-1	.	We	can	read	a	section	by	its	store	ID	like	this:

this.props.client.readFragment({

		id:	'Section:introduction',

		fragment:	gql`

				fragment	exampleSection	on	Section	{

						id

						views

						content

				}

		`

})

The		readFragment()		arguments	are	the	store	ID	and	a	fragment.	It	returns	just	that	section:

{

		content:	"..."

		id:	"introduction"

		views:	67

		__typename:	"Section"

		Symbol(id):	"Section:intro"

}

Similarly,		writeFragment()		allows	us	to	write	to	an	object	with	a	specific	store	ID:

this.props.client.writeFragment({

		id:	'Section:intro,

		fragment:	gql`

				fragment	sectionContent	on	Section	{

						content

						__typename

				}

		`,

		data:	{

				content:	'overwritten',	

				__typename:	'Section'

		}

})

Chapter	6:	React

121

If	we	ran	this	and	then	navigated	to		/Introduction	,	the	section	text	would	have	changed	to	just	the	word	"overwritten"
.	Not	to	worry—it’s	just	changing	the	local	client-side	store;	when	we	reload,	the	actual	Introduction	text	gets

refetched	from	the	server.	We	can	try	it	out	in	the	console,	but	first	we	have	to	(temporarily)	add	this	line	in	any	of	our
js	files	that	imports		gql	:

window.gql	=	gql

And	then	we	replace		this.props.client		with		__APOLLO_CLIENT__	,	which	is	a	global	variable	available	in	development.

gif:	Writing	a	fragment	to	the	store

Creating	reviews
If	you’re	jumping	in	here,		git	checkout	12_0.2.0		(tag	12_0.2.0,	or	compare	12...13)

Adding	the	ability	to	create	reviews	will	give	us	the	opportunity	to	look	at	a	more	complex	mutation	and	a	different	kind
of		update()		function—we’ll	be	updating	our	list	of	reviews	with	a	new	review	so	that	it	shows	up	at	the	top	of	the
Reviews	page.

Let’s	start	out	by	adding	a	FAB	(floating	action	button)	that	appears	on	the	Reviews	page	when	the	user	is	logged	in.
The	FAB	will	open	a	modal	that	has	the	form	for	a	new	review.	Whether	the	modal	is	open	is	a	state	variable,	so	we
need	to	convert		<Reviews>		from	a	function	to	to	a	stateful	component:

	src/components/Reviews.js	

import	React,	{	Component	}	from	'react'

import	{	Fab,	Modal	}	from	'@material-ui/core'

import	{	Add	}	from	'@material-ui/icons'

import	AddReview	from	'./AddReview'

class	Reviews	extends	Component	{

		state	=	{

				addingReview:	false

		}

		addReview	=	()	=>	{

				this.setState({	addingReview:	true	})

		}

		doneAddingReview	=	()	=>	{

				this.setState({	addingReview:	false	})

		}

		render()	{

				const	{	reviews,	loading,	user	}	=	this.props

				...

										{user	&&	(

												<div>

														<Fab

																onClick={this.addReview}

																color="primary"

																className="Reviews-add"

														>

																<Add	/>

														</Fab>

														<Modal

																open={this.state.addingReview}

																onClose={this.doneAddingReview}

														>

																<AddReview	done={this.doneAddingReview}	user={user}	/>

														</Modal>

Chapter	6:	React

122

http://res.cloudinary.com/graphql/guide/write-fragment.gif
https://github.com/GraphQLGuide/guide/tree/12_0.2.0
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0
https://material-ui.com/demos/buttons/#floating-action-buttons
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0

												</div>

)}

								</div>

						</main>

)

		}

}

	<AddReview>		will	need	a	way	to	let	us	know	it’s	done	(so	we	can	close	the	modal)	and	will	need	to	know	who	the	user
is	(the	creator	of	the	review).	To	set	a	primary	color	for	the	FAB	that	matches	the	rest	of	the	site,	we	need	a	Material
UI	theme.	We	can	see	from	the	default	theme	that		palette.primary.main		is	the	name	of	the	value	to	change:

	src/index.js	

import	{	MuiThemeProvider,	createMuiTheme	}	from	'material-ui/styles'

const	GRAPHQL_PINK	=	'#e10098'

const	theme	=	createMuiTheme({

		palette:	{	primary:	{	main:	GRAPHQL_PINK	}	}		

})

ReactDOM.render(

		<BrowserRouter>

				<ApolloProvider	client={client}>

						<MuiThemeProvider	theme={theme}>

								<App	/>

						</MuiThemeProvider>

				</ApolloProvider>

		</BrowserRouter>,

		document.getElementById('root')

)

Next	up	is	the		<AddReview>		form:

	src/components/AddReview.js	

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

import	StarInput	from	'react-star-rating-component'

import	{	Button,	TextField	}	from	'@material-ui/core'

import	{	Star,	StarBorder	}	from	'@material-ui/icons'

import	{	validateReview	}	from	'../lib/validators'

const	GREY	=	"#0000008a"

class	AddReview	extends	Component	{

		state	=	{

				text:	'',

				stars:	null,

				errorText:	null

		}

		updateText	=	event	=>	{

				this.setState({	text:	event.target.value	})

		}

		updateStars	=	stars	=>	{

				this.setState({	stars	})

		}

		handleSubmit	=	event	=>	{

				event.preventDefault()

				const	{	text,	stars	}	=	this.state

				const	errors	=	validateReview({	text,	stars	})

				if	(errors.text)	{

						this.setState({	errorText:	errors.text	})

						return

Chapter	6:	React

123

https://material-ui.com/customization/themes/
https://material-ui.com/customization/default-theme/
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0
https://github.com/GraphQLGuide/guide/blob/13_0.2.0/src/components/AddReview.js

				}

				//	mutate

				this.props.done()

		}

		render()	{

				return	(

						<form

								className="AddReview"

								autoComplete="off"

								onSubmit={this.handleSubmit}

						>

								<TextField

										className="AddReview-text"

										label="Review	text"

										value={this.state.text}

										onChange={this.updateText}

										helperText={this.state.errorText}

										error={!!this.state.errorText}

										multiline

										rowsMax="10"

										margin="normal"

										autoFocus={true}

								/>

								<StarInput

										className="AddReview-stars"

										starCount={5}

										editing={true}

										value={this.state.stars}

										onStarClick={this.updateStars}

										renderStarIcon={(currentStar,	rating)	=>

												currentStar	>	rating	?	<StarBorder	/>	:	<Star	/>

										}

										starColor={GREY}

										emptyStarColor={GREY}

										name="stars"

								/>

								<div	className="AddReview-actions">

										<Button	className="AddReview-cancel"	onClick={this.props.done}>

												Cancel

										</Button>

										<Button	type="submit"	color="primary"	className="AddReview-submit">

												Add	review

										</Button>

								</div>

						</form>

)

		}

}

AddReview.propTypes	=	{

		done:	PropTypes.func.isRequired,

		user:	PropTypes.shape({

				name:	PropTypes.string.isRequired,

				photo:	PropTypes.string.isRequired,

				username:	PropTypes.string.isRequired

		}).isRequired

}

export	default	AddReview

Before	we	mutate,	we	need	to	validate	the	form	input	and	show	the	error	message,	if	any.	We’ll	use	the	revalidate
library:

	src/lib/validators.js	

import	{

Chapter	6:	React

124

http://revalidate.jeremyfairbank.com/
https://github.com/GraphQLGuide/guide/blob/13_0.2.0/src/lib/validators.js

		createValidator,

		composeValidators,

		combineValidators,

		isRequired,

		hasLengthLessThan

}	from	'revalidate'

const	isString	=	createValidator(

		message	=>	value	=>	{

				if	(!(typeof	value	===	'string'))	{

						return	message

				}

		},

		field	=>	`${field}	must	be	a	String`

)

export	const	validateReview	=	combineValidators({

		text:	composeValidators(isRequired,	isString,	hasLengthLessThan(500))(

				'Review	text'

),

		stars:	createValidator(

				message	=>	value	=>	{

						if	(![null,	1,	2,	3,	4,	5].includes(value))	{

								return	message

						}

				},

				field	=>	`${field}	must	be	a	number	1–5`

)('Stars')

})

We	use		createValidator		to	create	custom	validator	functions,		composeValidator		to	compose	multiple	validator
functions	together,	and		combineValidators		to	combine	our	validators	in	an	object	matching	our	data	format,	with
	text		and		stars		fields.	Here	are	some	example	outputs:

validateReview({

		text:	1,

		stars:	5

})

//	=>	{text:	"Review	text	must	be	a	String"}

validateReview({

		text:	'my	review',

		stars:	'a	string'

})

//	=>	{stars:	Stars	must	be	a	number	1–5`}

We	don’t	need	to	check	for	a		stars		error	because	our		<StarInput>		doesn’t	produce	an	invalid	value.	But	we	include
it	in	the	validator	because	we’ll	also	use	it	on	the	server.

Next	we	add	the	mutation!	In	the	Playground	we	find	the		createReview		mutation.	(The	convention	is	that	if	the	data
type	is		Foo	,	the	basic	CUD	mutations	are	called		createFoo	,		updateFoo	,	and		deleteFoo	.)	We’re	used	to		gql		and
the		graphql		and		props		functions,	but	this	time	we’ll	have	a	larger		optimisticResponse		and	a	different	kind	of
	update()	:

	src/components/AddReview.js	

import	gql	from	'graphql-tag'

import	{	graphql	}	from	'react-apollo'

class	AddReview	extends	Component	{

		...

		handleSubmit	=	event	=>	{

				event.preventDefault()

				const	{	text,	stars	}	=	this.state

Chapter	6:	React

125

http://revalidate.jeremyfairbank.com/usage/createValidator.html
http://revalidate.jeremyfairbank.com/usage/composeValidators.html
http://revalidate.jeremyfairbank.com/usage/combineValidators.html
https://api.graphql.guide/play
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://github.com/GraphQLGuide/guide/blob/13_0.2.0/src/components/AddReview.js

				const	errors	=	validateReview({	text,	stars	})

				if	(errors.text)	{

						this.setState({	errorText:	errors.text	})

						return

				}

				this.props.addReview(text,	stars)

				this.props.done()

		}

		...

}

AddReview.propTypes	=	{

		...

		addReview:	PropTypes.func.isRequired

}

const	ADD_REVIEW_MUTATION	=	gql`

		mutation	AddReview($input:	CreateReviewInput!)	{

				createReview(input:	$input)	{

						id

						text

						stars

						createdAt

						favorited

						author	{

								name

								photo

								username

						}

				}

		}

`

const	withMutation	=	graphql(ADD_REVIEW_MUTATION,	{

		props:	({	ownProps:	{	user	},	mutate	})	=>	({

				addReview:	(text,	stars)	=>	{

						mutate({

								variables:	{

										input:	{	text,	stars	}

								},

								optimisticResponse:	{

										createReview:	{

												__typename:	'Review',

												id:	null,

												text,

												stars,

												createdAt:	new	Date(),

												favorited:	false,

												author:	{

														__typename:	'User',

														id:	null,

														name:	user.name,

														photo:	user.photo,

														username:	user.username

												}

										}

								},

								update:	(store,	{	data:	{	createReview:	newReview	}	})	=>	{

										const	data	=	store.readQuery({

												query:	TODO

										})

										data.reviews.unshift(newReview)

										store.writeQuery({	query:	TODO,	data	})

								}

						})

				}

		})

})

export	default	withMutation(AddReview)

Chapter	6:	React

126

We	don’t	know	what	the	server-side		id		will	be,	so	we	set	it	to		null	,	and	it	will	be	updated	by	Apollo	when	the
server	response	arrives.	Similarly,		createdAt		will	be	a	little	different	on	the	server,	but	not	enough	to	make	a
difference	for	optimistic	display.	We	know	that		favorited		is		false		because	the	user	hasn’t	had	a	chance	to	favorite
the	new	review,	and	the		author		is	the	current	user.

So	far	our	mutations	have	updated	an	existing	object	in	the	store	(the	one	with	the	same		id),	and	that	object,	since	it
was	part	of	a	query	result,	triggers	a	component	re-render.	But	this	time	there	is	no	existing	object:	we’re	adding	a
new	object	to	the	store.	And	the	new	object	isn’t	part	of	a	query	result.	Apollo	will	add	an	object	of	type		Review		with
	id:	null		to	the	store,	but	it	won’t	update	the		<Reviews>		component’s		reviews		prop	because	Apollo	doesn’t	know
the	new	review	object	should	be	part	of	the		REVIEWS_QUERY		results.	So	we	have	to	change	the		REVIEWS_QUERY		results
ourselves	in	the		update		function.

But	first	we	need	access	to		REVIEWS_QUERY	,	a	variable	inside		Reviews.js	.	We’d	run	into	trouble	setting	it	as	a	static
property	on		Reviews		and	doing		import	Reviews	from	'./Reviews		because	we’d	have	an	import	cycle—	Reviews.js	

imports		AddReview		(Reviews		would	wind	up	being		null).	So	let’s	create	a	new	folder	for	GraphQL	documents,
	src/graphql/	,	and	make	a	new	file:

	src/graphql/Review.js	

import	gql	from	'graphql-tag'

export	const	REVIEWS_QUERY	=	gql`

		query	ReviewsQuery	{

				reviews(limit:	20)	{

						id

						text

						stars

						createdAt

						favorited

						author	{

								id

								name

								photo

								username

						}

				}

		}

`

And	in		Reviews.js		and		AddReview.js	,	we	import	it:

	src/components/AddReview.js	

import	{	REVIEWS_QUERY	}	from	'../graphql/Review'

...

								update:	(store,	{	data:	{	createReview:	newReview	}	})	=>	{

										const	data	=	store.readQuery({

												query:	REVIEWS_QUERY

										})

										data.reviews.unshift(newReview)

										store.writeQuery({	query:	REVIEWS_QUERY,	data	})

								}

The	second	parameter	to		update		has	the	mutation	response—it’s	called	first	with	the	optimistic	response,	and	then
with	the	server	response.	So	initially,		data.createReview		is	the		optimisticResponse.createReview		object	we	just
created.	First	we	call		readQuery	,	reading	the	current	results	from	the	store.	Then	we	modify	the	data,		unshift	ing	the
	newReview		onto	the	beginning	of	the	array,	so	that	it	shows	up	first,	at	the	top	of	the	page.

gif:	Optimistically	adding	review

Chapter	6:	React

127

https://github.com/GraphQLGuide/guide/blob/13_0.2.0/src/graphql/Review.js
https://github.com/GraphQLGuide/guide/blob/13_0.2.0/src/components/AddReview.js
https://www.apollographql.com/docs/react/basics/mutations.html#graphql-mutation-options-update
http://res.cloudinary.com/graphql/guide/adding-review.gif

Using	fragments
Fragments	are	good	for	more	than	just	reading	from	and	writing	to	the	store:	they	also	can	DRY	up	our	queries	and
mutations.	The	selection	set	on		reviews		in	the	query	we	just	relocated	was	the	same	as	the	selection	set	on
	createReview		we	used	in	our	mutation.	Let’s	put	that	selection	set	in	a	fragment:

	src/graphql/Review.js	

import	gql	from	'graphql-tag'

export	const	REVIEW_ENTRY	=	gql`

		fragment	ReviewEntry	on	Review	{

				id

				text

				stars

				createdAt

				favorited

				author	{

						id

						name

						photo

						username

				}

		}

`

export	const	REVIEWS_QUERY	=	gql`

		query	ReviewsQuery	{

				reviews(limit:	20)	{

						...ReviewEntry

				}

		}

		${REVIEW_ENTRY}

`

We	can’t	name	the	fragment		Review		because	that’s	a	type	name,	so	the	convention	is		ReviewEntry	.	We	can	greatly
simplify	our		Review.propTypes		with	the		propType()		function	from		graphql-anywhere	:

	src/components/Review.js	

import	{	propType	}	from	'graphql-anywhere'

import	{	REVIEWS_QUERY,	REVIEW_ENTRY	}	from	'../graphql/Review'

Review.propTypes	=	{

		review:	propType(REVIEW_ENTRY).isRequired,

		favorite:	PropTypes.func.isRequired

}

	propType()		generates	a	React		propTypes	-compatible	type-checking	function	for	the		review		object	from	our
	ReviewEntry		fragment.

Let’s	also	use	the	fragment	in		<Reviews>		and		<AddReview>	:

	src/components/Reviews.js	

import	{	propType	}	from	'graphql-anywhere'

import	{	REVIEWS_QUERY,	REVIEW_ENTRY	}	from	'../graphql/Review'

Reviews.propTypes	=	{

		reviews:	PropTypes.arrayOf(propType(REVIEW_ENTRY)),

	src/components/AddReview.js	

import	{	propType	}	from	'graphql-anywhere'

import	{	REVIEWS_QUERY,	REVIEW_ENTRY	}	from	'../graphql/Review'

Chapter	6:	React

128

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0
https://github.com/apollographql/apollo-client/tree/master/packages/graphql-anywhere
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0
https://github.com/GraphQLGuide/guide/compare/12_0.2.0...13_0.2.0

const	ADD_REVIEW_MUTATION	=	gql`

		mutation	AddReview($input:	CreateReviewInput!)	{

				createReview(input:	$input)	{

						...ReviewEntry

				}

		}

		${REVIEW_ENTRY}

`

Deleting
If	you’re	jumping	in	here,		git	checkout	13_0.2.0		(tag	13_0.2.0,	or	compare	13...14)

Next	let’s	see	how	deleting	an	item	works.	We	can	add	a	dialog	box	confirming	deletion,	and	when	it’s	confirmed,	we’ll
send	the		removeReview(id)		mutation:

	src/components/Review.js	

import	{	graphql,	compose	}	from	'react-apollo'

import	Dialog,	{

		DialogActions,

		DialogContent,

		DialogContentText,

		DialogTitle

}	from	'material-ui/Dialog'

import	Button	from	'material-ui/Button'

class	Review	extends	Component	{

		state	=	{

				anchorEl:	null,

				deleteConfirmationOpen:	false

		}

		openDeleteConfirmation	=	()	=>	{

				this.closeMenu()

				this.setState({	deleteConfirmationOpen:	true	})

		}

		closeDeleteConfirmation	=	()	=>	{

				this.setState({	deleteConfirmationOpen:	false	})

		}

		delete	=	()	=>	{

				this.closeDeleteConfirmation()

				this.props.delete(this.props.review.id)

		}

		...

								<Dialog

										open={this.state.deleteConfirmationOpen}

										onClose={this.closeDeleteConfirmation}

								>

										<DialogTitle>{'Delete	review?'}</DialogTitle>

										<DialogContent>

												<DialogContentText>

														A	better	UX	is	probably	just	letting	you	single-click	delete	with

														an	undo	toast,	but	that’s	harder	to	code	right{'	'}

														

																<img	align='absmiddle'	alt=':smile:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/

emojis/smile.png'	title=':smile:'	/>

														

												</DialogContentText>

										</DialogContent>

										<DialogActions>

												<Button	onClick={this.closeDeleteConfirmation}>Cancel</Button>

												<Button	onClick={this.delete}	color="primary"	autoFocus>

														Sudo	delete

												</Button>

Chapter	6:	React

129

https://github.com/GraphQLGuide/guide/tree/13_0.2.0
https://github.com/GraphQLGuide/guide/compare/13_0.2.0...14_0.2.0
https://github.com/GraphQLGuide/guide/compare/13_0.2.0...14_0.2.0

										</DialogActions>

								</Dialog>

		...

const	DELETE_REVIEW_MUTATION	=	gql`

		mutation	DeleteReview($id:	ObjID!)	{

				removeReview(id:	$id)

		}

`

const	withDeleteMutation	=	graphql(DELETE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({	delete:	id	=>	mutate({	variables:	{	id	}	})	})

})

export	default	compose(withFavoriteMutation,	withDeleteMutation)(Review)

We	see	in	the	Playground	schema	that		removeReview		resolves	to	a	scalar	type	(Boolean),	so	unlike	our	previous
mutations,	it	doesn’t	have	a	selection	set:

When	we	try	out	the	new	delete	dialog,	we	notice	that	the	review	remains	on	the	page.	Did	it	work?	We	can	check	on
the	devtools	Network	tab,	selecting	the	last		graphql		request,	and	switching	to	the	Response	tab:

{"data":{"removeReview":true}}

gif:	Server	response	to	removeReview

So	the	deletion	was	successful	(when	we	refresh	the	page,	the	review	is	gone),	but	Apollo	client	didn’t	know	it	should
remove	the	review	object	from	the	store.	We	can	tell	it	to	do	so	with		update()	:

const	withDeleteMutation	=	graphql(DELETE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

				delete:	id	=>

						mutate({

								variables:	{	id	},

								update:	store	=>	{

										let	data	=	store.readQuery({	query:	Review.queries.REVIEWS	})

										remove(data.reviews,	{	id	})

										store.writeQuery({	query:	Review.queries.REVIEWS,	data	})

Chapter	6:	React

130

https://api.graphql.guide/play
http://res.cloudinary.com/graphql/guide/remove-review-response.gif

										data	=	store.readQuery({	query:	READ_USER_FAVORITES	})

										remove(data.currentUser.favoriteReviews,	{	id	})

										store.writeQuery({	query:	READ_USER_FAVORITES,	data	})

								}

						})

		})

})

We	need	to	remove	the	review	not	only	from	the		REVIEWS		query,	but	also	from		currentUser.favoriteReviews	—
otherwise,	when	we	delete	a	favorited	review,	the	count	in	the	header	of	the	reviews	page	will	be	inaccurate.

We’re	using		update()		without	an		optimisticResponse	,	which	means	it	will	only	be	called	once,	when	the	server
response	arrives.	We’ll	notice	a	delay	between	clicking		SUDO	DELETE		and	the	review	being	removed	from	the	page.	If
we	want	it	to	be	removed	immediately,	we	need	an		optimisticResponse	,	even	if	we’re	not	using	the	optimistic	data:

						mutate({

								variables:	{	id	},

								optimisticResponse:	{

										removeReview:	true

								},

								update:	...

gif:	Removing	a	review

Error	handling
Background:	GraphQL	errors

If	you’re	jumping	in	here,		git	checkout	14_0.2.0		(tag	14_0.2.0,	or	compare	14...15)

When	we	try	to	delete	a	review	that	isn’t	ours,	nothing	happens.	In	the	console,	we	see:

ApolloError.js:34	Uncaught	(in	promise)	Error:	GraphQL	error:	unauthorized

				at	new	ApolloError	(ApolloError.js:34)

				at	Object.next	(QueryManager.js:98)

				at	SubscriptionObserver.next	(zen-observable.js:154)

				at	SubscriptionObserver.next	(zen-observable.js:154)

				at	httpLink.js:140

				at	<anonymous>

Let’s	break	that	down:

	ApolloError.js:34	Uncaught	(in	promise)	Error:	—Apollo	is	saying	that	there	was	a	Promise	that	threw	an	error,
and	our	code	didn’t	catch	it.
	GraphQL	error:	—It	was	a	GraphQL	error:	an	error	returned	to	us	from	the	GraphQL	server,	not	an	error	in	the
Apollo	library.
	unauthorized	—This	is	the	error	message	from	the	GraphQL	server

So	the	Guide	server	is	saying	that	we’re	not	authorized	to	execute	that		removeReview		mutation.	This	makes	sense,
because	it’s	not	our	review.	We	should	have	the	app	tell	the	user	that,	though.	A	call	to		mutate()	—or,	in	our	case,
	this.props.delete	—returns	a	Promise.	This	Promise	will	throw	GraphQL	errors,	which	we	can	catch	like	this:

this.props

		.delete(this.props.review.id)

		.catch(e	=>	console.log(e.graphQLErrors))

	e.graphQLErrors		is	an	array	of	all	the	errors	returned	from	the	server.	In	this	case,	we	just	have	one:

Chapter	6:	React

131

http://res.cloudinary.com/graphql/guide/remove-review.gif
https://github.com/GraphQLGuide/guide/tree/14_0.2.0
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0

[

		{

				message:	"unauthorized",

				locations:	[{"line":2,"column":3}],

				path:	["removeReview"]

		}

]

We	can	now	alert	the	user	of	the	error,	depending	on	whether	we	find	an	"unauthorized"	message:

	src/components/Review.js	

		delete	=	()	=>	{

				this.closeDeleteConfirmation()

				this.props.delete(this.props.review.id).catch(e	=>	{

						if	(find(e.graphQLErrors,	{	message:	'unauthorized'	}))	{

								alert('ח �♀�✋ 	You	can	only	delete	your	own	reviews!')

						}

				})

		}

But	what	about	other	errors?	We	could	get	errors	about	anything	bad	happening	on	the	server,	from	dividing	by	zero
to	a	database	query	failing.	We	could	add	an		else		statement:

}	else	{

		alert('Unexpected	error	occurred')

}

But	that	wouldn’t	cover	unexpected	errors	occurring	in	all	of	our	other	queries	and	mutations.	We	can	avoid	peppering
these	unexpected-error	alerts	all	over	our	code	by	checking	errors	globally	as	they	arrive	from	the	network.	Whenever
we	want	to	do	some	logic	that	all	requests	or	responses	go	through,	we	use	a	link.	At	the	end	of	the	Logging	in
section,	we	used	an		apollo-link-context		to	set	an	authentication	header	on	all	outgoing	HTTP	requests.	Here	we
can	use	an		apollo-link-error	.	In		index.js	,	we	rename	our		link		to	be		networkLink	,	then:

	src/index.js	

import	{	errorLink	}	from	'./lib/errorLink'

const	link	=	errorLink.concat(networkLink)

In	a	chain	of	links	from	left	to	right	(where		leftLink.concat(rightLink)),	off	the	left	side	of	the	chain	is	our	code,	and
off	the	right	side	is	the	network.	We	put		errorLink		to	the	left	of		networkLink		because	we	need	the	GraphQL
response	coming	from	the	network	(off	right	side)	to	first	go	through	the		networkLink		(the	right	end),	and	then	to	the
	errorLink		(left	end),	before	reaching	our	code	(off	left	side).	We	create	a	new	file	for		errorLink	:

	src/lib/errorLink.js	

import	{	onError	}	from	'apollo-link-error'

const	KNOWN_ERRORS	=	['unauthorized']

export	const	errorLink	=	onError(({	graphQLErrors,	networkError	})	=>	{

		if	(networkError)	{

				console.log(`[Network	error]:	${networkError}`)

				return

		}

		if	(graphQLErrors)	{

				const	unknownErrors	=	graphQLErrors.filter(

						error	=>	!KNOWN_ERRORS.includes(error.message)

)

				if	(unknownErrors.length)	{

Chapter	6:	React

132

https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0
https://github.com/apollographql/apollo-link/tree/master/packages/apollo-link-error
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0
https://github.com/GraphQLGuide/guide/blob/15_0.2.0/src/lib/errorLink.js

						alert('ࠏ 	An	unexpected	error	occurred	on	the	server')

						unknownErrors.map(({	message,	locations,	path	})	=>

								console.log(`[GraphQL	error]:	Message:	${message},	Path:	${path}`)

)

				}

		}

})

If	there’s	a	known	error,	like		'unauthorized'	,	let’s	leave	it	to	the	originating	component	to	alert	the	user,	since	that
component	knows	the	context	of	the	error.	For	example,	in		<Review>	,	we	can	be	specific,	saying	“You	can	only	delete
your	own	reviews!”	Whereas	if	we	made	the	alert	in		errorLink	,	it	would	be	less	helpful:	“You	are	not	authorized	to
view	this	data	or	perform	this	action.”

By	default,	when	a	GraphQL	error	is	returned	from	the	server,	Apollo	treats	it	as	a	fatal	error	in	the	query	or	mutation.
In	the	case	of	an	unauthorized	deletion,	the	error	is	thrown	from	the	mutation	function,	and		update()		isn’t	called.	This
is	why	the	review	remains	on	the	page.	If	we	were	sending	a	mutation	for	which	we	didn’t	care	about	server	errors,
and	we	wanted	the		update()		function	to	always	run	regardless,	we	could	change	the	mutation’s	default	error	policy:

	src/components/Review.js	

const	withDeleteMutation	=	graphql(DELETE_REVIEW_MUTATION,	{

		options:	{	errorPolicy:	'ignore'	},

		props:	({	mutate	})	=>	...

})

Then	the	call	to		this.props.delete()		would	resolve	without	error,	and	the	review	would	be	removed	from	the	store
and	page.

Changing	the	error	policy	is	more	often	useful	when	querying.	Let’s	see	how	the	default	error	policy	works	when
querying.	We	can	change	the		limit		argument	on	our		reviews		query	to	a	special	value	of		-1		that	will	return	demo
reviews,	some	of	which	have	a	private		text		field.

	src/graphql/Review.js	

export	const	REVIEWS_QUERY	=	gql`

		query	ReviewsQuery	{

				reviews(limit:	-1)	{

When	we	do	this	query	in	Playground:

{

		reviews(limit:	-1)	{

				stars

				text

		}

}

here’s	the	response	we	get	back:

{

		"data":	{

				"reviews":	[

						{

								"stars":	5,

								"text":	null

						},

						{

								"stars":	4,

								"text":	"GraphQL	is	awesome,	but	React	is	soooo	2016.	Write	me	a	Vue	chapter!"

						},

						{

								"stars":	3,

								"text":	null

Chapter	6:	React

133

https://www.apollographql.com/docs/react/features/error-handling.html#policies
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0
https://api.graphql.guide/play

						}

]

		},

		"errors":	[

				{

						"message":	"unauthorized",

						"locations":	[

								{

										"line":	4,

										"column":	5

								}

],

						"path":	[

								"reviews",

								0,

								"text"

]

				},

				{

						"message":	"unauthorized",

						"locations":	[

								{

										"line":	4,

										"column":	5

								}

],

						"path":	[

								"reviews",

								2,

								"text"

]

				}

]

}

Playground:		query	{	reviews(limit:	-1)	{	stars	text	}	}	

The	first	and	third	reviews	have	private		text		fields,	so	we	see		text:	null		in		data.reviews		and	the		errors		array
has	entries	for	each	one	with		"unauthorized"		messages.	The	first	error		path		is		reviews.0.text	,	corresponding	to
the	0th	review	in	the		data.reviews		array,	and	the	second	error	is	at		review.2.text	.	So	the	errors	match	up	with	the
reviews	that	have		text:	null	.

The	Review	schema	says	that		text		is	nullable.	If		text		had	been	non-nullable	(text:	String!),	then	an	error
in	the		text		resolver	would	have	made	the	entire	object		null	—	data		would	have	been		{	"reviews":	null	}	.

Let’s	see	how	our	app	is	handling	this	partially-null	data	response	with	an		errors		attribute.	We’re	getting	an	error:

Uncaught	TypeError:	Cannot	read	property	'map'	of	undefined

				at	Reviews.render	(Reviews.js:46)

				...

Which	corresponds	to	this	line:

reviews.map(review	=>	<Review	key={review.id}	review={review}	/>)

So	it	looks	like		reviews		is	undefined.	Let’s	also	look	at		data.error	:

	src/components/Reviews.js	

class	Reviews	extends	Component

		render()	{

				console.log(this.props.error)

				...

		}

}

Chapter	6:	React

134

https://graphqlbin.com/r02EC1
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0

const	withReviews	=	graphql(Review.queries.REVIEWS,	{

		props:	({	data:	{	reviews,	loading,	error	}	})	=>	({

				reviews,

				loading,

				error

		})

})

It	has	these	fields:

["stack",	"graphQLErrors",	"networkError",	"message",	"extraInfo"]

and		this.props.error.graphQLErrors		looks	like	this:

[

		{

				message:	"unauthorized",

				locations:	[{	line:	10,	column:	3	}],

				path:	["reviews",	0,	"text"]

		},

		{

				message:	"unauthorized",

				locations:	[{	line:	10,	column:	3	}],

				path:	["reviews",	2,	"text"]

		}

]

If	we	want		reviews		to	be	defined,	we	can	set		errorPolicy		to		'all'	:

	src/components/Review.js	

const	withReviews	=	graphql(Review.queries.REVIEWS,	{

		options:	{	errorPolicy:	'all'	},

We	can	handle		text		sometimes	being		null		in		<Review>	:

	src/components/Review.js	

<CardContent>

		{text	?	(

				<Typography	component="p">{text}</Typography>

)	:	(

				<Typography	component="i">Text	private</Typography>

)}

</CardContent>

If	there	were	other	errors	that	we	thought	might	result	in	a	null		text		field,	we	could	take	different	actions	based	on
	this.props.error		in		<Reviews>	.	If	we	wanted	to	ignore	all	errors	(reviews	would	be	defined,	and		this.props.error	
would	be	undefined),	we	could	set		errorPolicy:	'ignore'	.

Chapter	6:	React

135

https://www.apollographql.com/docs/react/features/error-handling.html#policies
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0
https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0

Let’s	see	what	happens	when	we	trigger	a	different	error:	first	let’s	sign	out,	and	then	let’s	interact	with	a	review.	We
notice	that	when	we	favorite,	edit,	or	delete,	the	"unexpected	error"	alert	appears:

To	figure	out	what	it	is,	we	could	look	at	the	GraphQL	response	in	the	Network	panel,	or	we	can	just	look	in	the
console,	since	the		errorLink		we	made	logs	unknown	errors.	There,	we	find	that	the	error	message	is		must	sign	in	,
for	instance:

[GraphQL	error]:	Message:	must	sign	in,	Path:	favoriteReview

Having	a	user	see	this	alert	isn’t	good	UX.	One	way	to	avoid	it	is	by	adding		must	sign	in		to		KNOWN_ERRORS		in
	src/lib/errorLink.js	,	and	then	handling	the	error	in		<Review>		with	a	message	like,	“Sign	in	to	favorite	a	review.”
Another	way	to	avoid	the	error	is	to	just	remove	the	UI	controls	when	the	user	isn’t	signed	in	 .	Let’s	go	with	the
latter	solution,	but	before	we	do,	note	what	happens	to	the	review	on	the	page	right	after	we	take	the	action,	before	we
dismiss	the	alert:	when	we	favorite,	the	heart	stays	filled	in;	when	we	delete,	the	review	disappears,	and	when	we	edit,
the	review	changes.	In	each	case,	when	we	dismiss	the	alert,	the	review	changes	back	to	its	previous	state.	This	is	a
great	demonstration	of	optimistic	updates—Apollo	applies	the	optimistic	change,	then	it	receives	an	error	back	from
the	server,	which	goes	through	our		errorLink	,	which	puts	up	an	alert,	which	halts	JS	execution	until	it	is	dismissed.
Once	it’s	dismissed,	Apollo	is	able	to	finish	handling	the	response—it	realizes	that	the	mutation	was	unsuccessful,	so
it	rolls	back	the	optimistic	update,	restoring	our	store	to	its	previous	state,	which	triggers	new	props	being	provided	to
our	components,	which	triggers	React	to	re-render	them.

To	remove	the	UI	elements,	we	need	to	first	get	the	user	info	down	to		<Review>	:

	src/components/Reviews.js	

reviews.map(review	=>	(

		<Review	key={review.id}	review={review}	user={user}	/>

))

Chapter	6:	React

136

https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0

And	then	check	if		user		is	defined:

	src/components/Review.js	

		render()	{

				const	{

						review:	{	text,	stars,	createdAt,	favorited,	author	},

						user

				}	=	this.props

				...

										<CardHeader

												action={

														user	&&	(

																<IconButton	onClick={this.openMenu}>

																		<MoreVert	/>

																</IconButton>

)

												}

												...

												{user	&&	(

														<IconButton	onClick={this.toggleFavorite}>

																{favorited	?	<Favorite	/>	:	<FavoriteBorder	/>}

														</IconButton>

)}

												...

Review.propTypes	=	{

		...

		user:	PropTypes.object

}

Editing	reviews

Chapter	6:	React

137

https://github.com/GraphQLGuide/guide/compare/14_0.2.0...15_0.2.0

If	you’re	jumping	in	here,		git	checkout	15_0.2.0		(tag	15_0.2.0,	or	compare	15...16)

The	last	piece	of	reviews	we	haven’t	implemented	yet	is	editing!	Let’s	see	how	much	of	our		<AddReview>		component
we	can	reuse	by	renaming	it	to		<ReviewForm>		and	deciding	which	mutation	to	call	based	on	the	props.	We’ll	need	to
add	a		<Modal>		with	the	form	to		<Review>		and	pass	in	the	review	object	as	a	prop:

	src/components/Review.js	

import	Modal	from	'material-ui/Modal'

import	ReviewForm	from	'./ReviewForm'

class	Review	extends	Component	{

		state	=	{

				anchorEl:	null,

				deleteConfirmationOpen:	false,

				editing:	false

		}

		edit	=	()	=>	{

				this.closeMenu()

				this.setState({	editing:	true	})

		}

		doneEditing	=	()	=>	{

				this.setState({	editing:	false	})

		}

		render()	{

				...

								<Modal	open={this.state.editing}	onClose={this.doneEditing}>

										<ReviewForm	done={this.doneEditing}	review={this.props.review}	/>

								</Modal>

						</div>

)

		}

}

The	mutation	takes	the	review’s		id		and	the	new		text		and		stars		fields:

input	UpdateReviewInput	{

		text:	String!

		stars:	Int

}

type	Mutation	{

		updateReview(id:	ObjID!,	input:	UpdateReviewInput!):	Review

}

We	know	whether	we’re	editing	based	on	the	presence	of	the		review		prop,	and	we	also	use	it	to	set	initial	values	for
the		text		and		stars		inputs:

	src/components/ReviewForm.js	

import	{	graphql,	compose	}	from	'react-apollo'

import	classNames	from	'classnames'

class	ReviewForm	extends	Component	{

		constructor(props)	{

				super(props)

				const	{	review	}	=	props

				this.isEditing	=	!!review

				this.state	=	{

						text:	review	?	review.text	:	'',

						stars:	review	?	review.stars	:	null,

Chapter	6:	React

138

https://github.com/GraphQLGuide/guide/tree/15_0.2.0
https://github.com/GraphQLGuide/guide/compare/15_0.2.0...16_0.2.0
https://github.com/GraphQLGuide/guide/compare/15_0.2.0...16_0.2.0
https://github.com/GraphQLGuide/guide/compare/15_0.2.0...16_0.2.0

						errorText:	null

				}

		}

		...

		handleSubmit	=	event	=>	{

				event.preventDefault()

				const	{	text,	stars	}	=	this.state

				const	errors	=	validateReview({	text,	stars	})

				if	(errors.text)	{

						this.setState({	errorText:	errors.text	})

						return

				}

				const	{	review	}	=	this.props

				if	(this.isEditing)	{

						this.props.editReview(review.id,	text,	stars)

				}	else	{

						this.props.addReview(text,	stars)

				}

				this.props.done()

		}

		render()	{

				return	(

						<form

								className={classNames('ReviewForm',	{	editing:	this.isEditing	})}

								...

										<Button	type="submit"	color="primary"	className="AddReview-submit">

												{this.isEditing	?	'Save'	:	'Add	review'}

										</Button>

								</div>

						</form>

)

		}

}

ReviewForm.propTypes	=	{

		...

		editReview:	PropTypes.func.isRequired,

		review:	PropTypes.shape({

				id:	PropTypes.string.isRequired,

				text:	PropTypes.string,

				stars:	PropTypes.number

		})

}

...

const	EDIT_REVIEW_MUTATION	=	gql`

		mutation	EditReview($id:	ObjID!,	$input:	UpdateReviewInput!)	{

				updateReview(id:	$id,	input:	$input)	{

						id

						text

						stars

				}

		}

`

const	withEditReview	=	graphql(EDIT_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

				editReview:	(id,	text,	stars)	=>	{

						mutate({

								variables:	{

										id,

										input:	{	text,	stars	}

								},

								optimisticResponse:	{

Chapter	6:	React

139

										updateReview:	{

												__typename:	'Review',

												id,

												text,

												stars

										}

								}

						})

				}

		})

})

export	default	compose(withAddReview,	withEditReview)(ReviewForm)

When	editing	an	object,	we	only	need	to	select	the		id		and	fields	that	are	changing.	When	the	response	arrives	(and
when	the		optimisticResponse		is	handled),	just	those	fields	are	updated	in	the	store	(the	other	fields	like		author		and
	favorited		will	remain).

gif:	Editing	a	review

Advanced	querying
Section	contents:

Paginating
Offset-based

page
skip	&	limit

Cursors
after
orderBy

Updating	multiple	queries
Local	state

Direct	writes
Local	mutations

REST
Review	subscriptions

Subscription	component
Add	new	reviews
Update	on	edit	and	delete

Prefetching
On	mouseover
Cache	redirects

Batching
Persisting
Multiple	endpoints

Paginating
Offset-based

page
skip	&	limit

Cursors
after

Chapter	6:	React

140

http://res.cloudinary.com/graphql/guide/edit-review.gif

orderBy

Our		ReviewsQuery		currently	has		limit:	20		because	loading	all	the	reviews	would	be	unwise	 .	We	don’t	know	how
many	reviews	there	will	be	in	the	database,	and	receiving	thousands	of	them	over	the	network	would	take	a	long	time
on	mobile.	They’d	take	a	lot	of	memory	in	the	Apollo	store,	they’d	take	a	long	time	to	render	onto	the	page,	and	we’d
have	the	problems	that	come	along	with	a	high	DOM	(and	VDOM)	node	count:	interacting	with	the	DOM	takes	longer,
and	the	amount	of	memory	the	browser	uses	grows—in	the	worst	case,	it	exceeds	the	available	memory	on	the
device.	On	mobile,	the	OS	kills	the	browser	process,	and	on	a	computer,	the	OS	starts	using	the	hard	drive	for
memory,	which	is	very	slow.

	So!	In	any	app	where	the	user	might	want	to	see	a	potentially	long	list	of	data,	we	paginate:	we	request	and	display
a	set	amount	of	data,	and	when	the	user	wants	more	(either	by	scrolling	down—in	the	case	of	infinite	scroll—or	by
clicking	a	“next	page”	link	or	“page	3”	link),	we	request	and	display	more.	There	are	two	main	methods	of	pagination:
offset-based,	which	we’ll	talk	about	first,	and	cursors.

We	can	display	the	data	however	we	want.	The	two	most	common	methods	are	pages	(with	next/previous	links	and/or
numbered	page	links	like	Google	search	results)	and	infinite	scroll.	We	can	use	either	data-fetching	method	with	either
display	method.

Offset-based

Offset-based	pagination	is	the	easier	of	the	two	methods	to	implement—both	on	the	client	and	on	the	server.	In	its
simplest	form,	we	request	a		page		number,	and	each	page	has	a	set	number	of	items.	The	Guide	server	sends	10
items	per	page,	so	page	1	has	the	first	10,	page	2	has	items	11-20,	etc.	A	more	flexible	form	is	using	two	parameters:
	offset		(or		skip)	and		limit	.	The	client	decides	how	large	each	page	is	by	setting	the		limit		of	how	many	items
the	server	should	return.	For	instance,	we	can	have	20-item	pages	by	first	requesting		skip:	0,	limit:	20	,	then
requesting		skip:	20,	limit:	20		(“give	me	20	items	starting	with	#20”,	so	items	20-39),	then		skip:	40,	limit:	20	,
etc.

The	downside	of	offset-based	pagination	is	that	if	the	list	is	modified	between	requests,	we	might	miss	items	or	see
them	twice.	Take,	for	example,	this	scenario:

1.	 We	fetch	page	1	with	the	first	10	items.
2.	 Some	other	user	deletes	the	4th	and	5th	items.
3.	 If	we	were	to	fetch	page	1	again,	we	would	get	the	new	first	10	items,	which	would	now	be	items	1–3	and	6–12.

But	we	don’t	refetch	page	1—we	fetch	page	2.
4.	 Page	2	returns	items	13–22.	Which	means	now	we’re	showing	the	user	items	1-10	and	13-22,	and	we’re	missing

items	11	and	12,	which	are	now	part	of	page	1.

On	the	other	hand,	if	things	are	added	to	the	list,	we’ll	see	things	twice:

1.	 We	fetch	page	1	with	the	first	10	items.
2.	 Some	other	user	submits	two	new	items.
3.	 If	we	were	to	fetch	page	1	again,	we	would	get	the	2	new	items	and	then	items	1–8.	But	instead	we	fetch	page	2.
4.	 Page	2	returns	items	9-18,	which	means	our	list	has	items	9	and	10	twice—once	from	page	1	and	once	from

page	2.

Depending	on	our	application,	these	issues	might	never	happen,	or	if	they	do,	it	might	not	be	a	big	deal.	If	it	is	a	big
deal,	switching	to	cursor-based	pagination	will	fix	it.	Another	possible	solution,	depending	on	how	often	items	are
added/deleted,	is	requesting	extra	pages	(to	make	sure	not	to	miss	items)	and	de-duplicating	(to	make	sure	not	to
display	the	same	item	twice).	For	example,	first	we	could	request	just	page	1,	and	then	when	we	want	page	2,	we
request	both	pages	1	and	2.	Now	if	we	were	in	the	first	scenario	above,	and	the	4th	and	5th	items	were	deleted,	re-
requesting	page	1	would	get	items	11	and	12,	which	we	previously	missed.	We’ll	get	items	1–3	and	6–10	a	second
time,	but	we	can	match	their	IDs	to	objects	already	in	the	store	and	discard	them.

Chapter	6:	React

141

Let’s	see	this	in	action.	Normally	an	API	will	support	a	single	pagination	method,	but	as	we	can	see	from	this	schema
comment,	the		reviews		query	supports	three	different	methods:

page

If	you’re	jumping	in	here,		git	checkout	16_0.2.0		(tag	16_0.2.0,	or	compare	16...17)

Let’s	try		page		first.	We	switch	our		ReviewQuery		from	using	the		limit		parameter	to	using	the		page		parameter,	and
we	use	a	variable	so	that		<Reviews>		can	say	which	page	it	wants.

	src/graphql/Review.js	

export	const	REVIEWS_QUERY	=	gql`

		query	ReviewsQuery($page:	Int)	{

				reviews(page:	$page)	{

						...ReviewEntry

				}

		}

		${REVIEW_ENTRY}

`

	src/components/Reviews.js	

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{	errorPolicy:	'all',	variables:	{	page:	1	}	},

Now	the	page	displays	the	first	10	reviews.	If	we	change	it	to		{	page:	2	}	,	we	see	the	second	10	reviews.	We	could
make	the	page	number	dynamic,	but	let’s	wait	to	do	that	with	the	next	method,	skip	and	limit.

skip	&	limit

To	use	the		skip		and		limit		parameters,	we	replace		page		with	them	in	the	query:

	src/graphql/Review.js	

export	const	REVIEWS_QUERY	=	gql`

		query	ReviewsQuery($skip:	Int,	$limit:	Int)	{

				reviews(skip:	$skip,	limit:	$limit)	{

						...ReviewEntry

				}

		}

Chapter	6:	React

142

https://github.com/GraphQLGuide/guide/tree/16_0.2.0
https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0
https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0

		${REVIEW_ENTRY}

`

and	update	our	component:

	src/components/Reviews.js	

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{	errorPolicy:	'all',	variables:	{	skip:	0,	limit:	10	}	},

And	we	see	the	first	10	reviews.	To	see	the	next	10,	we	can	skip	the	first	10	with		{	skip:	10,	limit:	10	}	.

Let’s	implement	infinite	scroll,	during	which	the	component	will	provide	new	values	for		skip		when	the	user	scrolls	to
the	bottom	of	the	page.	First	let’s	simplify	what	we’re	working	with	by	extracting	out	the	list	of	reviews	to
	<ReviewList>	.		<Reviews>		will	be	left	with	the	header	and	the	add	button.	Here’s	our	new		<ReviewList>	:

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

import	{	graphql	}	from	'react-apollo'

import	{	propType	}	from	'graphql-anywhere'

import	Review	from	'./Review'

import	{	REVIEWS_QUERY,	REVIEW_ENTRY	}	from	'../graphql/Review'

class	ReviewList	extends	Component	{

		render()	{

				const	{	reviews,	loading,	user	}	=	this.props

				return	(

						<div	className="Reviews-content">

								{loading

										?	<div	className="Spinner"	/>

										:	reviews.map(review	=>	(

												<Review	key={review.id}	review={review}	user={user}	/>

))

								}

						</div>

)

		}

}

ReviewList.propTypes	=	{

		reviews:	PropTypes.arrayOf(propType(REVIEW_ENTRY)),

		loading:	PropTypes.bool.isRequired,

		user:	PropTypes.object

}

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{	errorPolicy:	'all',	variables:	{	skip:	0,	limit:	10	}	},

		props:	({	data:	{	reviews,	loading	}	})	=>	({

				reviews,

				loading

		})

})

export	default	withReviews(ReviewList)

We’re	going	to	want	a	spinner	at	the	bottom	of	the	list	of	reviews	to	indicate	that	we’re	loading	more.	When	the	list	is
really	long—as	it	is	in	the	case	of	reviews—we	don’t	need	to	code	hiding	the	spinner,	since	it’s	unlikely	users	will
reach	the	end	 .	Since	we’ll	always	have	a	spinner,	we	no	longer	need		loading	:

	src/components/ReviewList.js	

class	ReviewList	extends	Component	{

		render()	{

				const	{	reviews,	user	}	=	this.props

Chapter	6:	React

143

https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0
https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0

				return	(

						<div	className="Reviews-list">

								<div	className="Reviews-content">

										{reviews	&&	reviews.map(review	=>	(

												<Review	key={review.id}	review={review}	user={user}	/>

))}

								</div>

								<div	className="Spinner"	/>

						</div>

)

		}

}

ReviewList.propTypes	=	{

		reviews:	PropTypes.arrayOf(propType(REVIEW_ENTRY)),

		user:	PropTypes.object

}

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{	errorPolicy:	'all',	variables:	{	skip:	0,	limit:	10	}	},

		props:	({	data:	{	reviews	}	})	=>	({

				reviews

		})

})

Note	that	now	we	need	to	guard	with		reviews	&&	reviews.map	,	since		reviews		is		undefined		during	loading.

	graphql()		gives	a	prop	named		data.fetchMore		that	we	can	use	to	fetch	more	data	using	the	same	query	but
different	variables.	Let’s	use	it	to	create	a		loadMoreReviews()		for		ReviewList		to	call:

	src/components/ReviewList.js	

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{	errorPolicy:	'all',	variables:	{	skip:	0,	limit:	10	}	},

		props:	({	data:	{	reviews,	fetchMore	}	})	=>	({

				reviews,

				loadMoreReviews:	()	=>	{

						return	fetchMore({

								variables:	{	skip:	reviews.length	},

								updateQuery:	(previousResult,	{	fetchMoreResult	})	=>	{

										if	(!fetchMoreResult.reviews)	{

												return	previousResult

										}

										return	{

												...previousResult,

												reviews:	[

														...previousResult.reviews,

														...fetchMoreResult.reviews

]

										}

								}

						})

				}

		})

})

	variables:	{	skip:	reviews.length	}	:	we	can	keep	the	same		limit		by	not	including	it	here.	And	we	know	how	many
to	skip	for	the	next	query—the	amount	we	currently	have,		data.reviews.length	.		updateQuery		is	how	we	tell	Apollo	to
combine	the	current	data	with	the	newly	arrived	data,	which	for	us	is	simply	putting	the	new	reviews	on	the	end	of	the
	reviews		array.	Now	we	call		loadMoreReviews()		when	the	user	approaches	the	bottom	of	the	page:

	src/components/ReviewList.js	

class	ReviewList	extends	Component	{

		componentDidMount()	{

				window.addEventListener('scroll',	this.handleScroll)

		}

Chapter	6:	React

144

https://www.apollographql.com/docs/react/basics/queries.html#graphql-query-data-fetchMore
https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0
https://www.apollographql.com/docs/react/basics/queries.html#graphql-query-data-fetchMore
https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0

		componentWillUnmount()	{

				clearTimeout(this.timeoutID)

				window.removeEventListener('scroll',	this.handleScroll)

		}

		handleScroll	=	(event)	=>	{

				const	currentScrollHeight	=	window.scrollY	+	window.innerHeight

				const	pixelsFromBottom	=	document.documentElement.scrollHeight	-	currentScrollHeight

				if	(pixelsFromBottom	<	250)	{

						this.props.loadMoreReviews()

				}

		}

This	works!	One	issue	is	that	scroll	events	fire	often,	so	once	the	user	passes	the	threshold,	we’re	calling
	loadMoreReviews()		a	lot	 .	We	only	need	to	once,	so	we	want	to	stop	ourselves	from	calling	it	again	if	we	just	called
it.	We	can	tell	whether	we	just	called	it	by	looking	at		graphql()	’s		data.networkStatus	,	which	has	a	numerical	value
corresponding	with	different	statuses—loading,	ready,	polling,	refetching,	etc.	It’s		3		while	Apollo	is	fetching	more
data,	and	then	goes	back	to		7		(ready)	when	the	data	has	arrived.	So	we	can	add	in	a	guard:

const	FETCH_MORE	=	3

class	ReviewList	extends	Component	{

		...

		handleScroll	=	(event)	=>	{

				if	(this.props.networkStatus	===	FETCH_MORE)	{

						return

				}

				const	currentScrollHeight	=	window.scrollY	+	window.innerHeight

				const	pixelsFromBottom	=	document.documentElement.scrollHeight	-	currentScrollHeight

				if	(pixelsFromBottom	<	250)	{

						this.props.loadMoreReviews()

				}

		}

...

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{

				errorPolicy:	'all',

				variables:	{	skip:	0,	limit:	10	},

				notifyOnNetworkStatusChange:	true

		},

		props:	({	data:	{	reviews,	fetchMore,	networkStatus	}	})	=>	({

				reviews,

				networkStatus,

				loadMoreReviews:	()	=>	{

						...

We	need	to	add		networkStatus		to	our		props		function	to	provide	it	to	our	component.	We	also	need	to	set
	options.notifyOnNetworkStatusChange		to		true	,	which	allows		networkStatus		to	change	to		3	.

Another	issue	we’ve	got	is	what	happens	when	someone	else	adds	a	review	during	the	time	between	when	the	user
loads	the	page	and	when	they	scroll	to	the	bottom:		loadMoreReviews()		will	query	for		reviews(skip:	10,	limit:	10)	,
which	will	return	items	11-20.	However,	the	11th	item	now	is	the	same	as	the	10th	item	before,	and	we	already	have
the	10th	item	in		previousResult	.	When	we	combine		previousResult		with		fetchMoreResult	,	we	get	a		reviews		array
with	a	duplicated	item:

updateQuery:	(previousResult,	{	fetchMoreResult	})	=>	{

		if	(!fetchMoreResult.reviews)	{

				return	previousResult

		}

		return	{

Chapter	6:	React

145

https://www.apollographql.com/docs/react/basics/queries.html#graphql-query-data-networkStatus
https://www.apollographql.com/docs/react/basics/queries.html#graphql-config-options-notifyOnNetworkStatusChange

				...previousResult,

				reviews:	[

						...previousResult.reviews,

						...fetchMoreResult.reviews

]

		}

}

Since	we	use	the	review’s		id		for	the		key	,	React	gives	us	this	error	in	the	console:

Warning:	Encountered	two	children	with	the	same	key

We	can	prevent	duplicated	objects	from	being	saved	in	the	store	by	changing		updateQuery	:

import	find	from	'lodash/find'

...

loadMoreReviews:	()	=>	{

		return	fetchMore({

				variables:	{	skip:	reviews.length	},

				updateQuery:	(previousResult,	{	fetchMoreResult	})	=>	{

						if	(!fetchMoreResult.reviews)	{

								return	previousResult

						}

						const	newReviews	=	fetchMoreResult.reviews.filter(

								({	id	})	=>	!find(previousResult.reviews,	{	id	})

)

						return	{

								...previousResult,

								reviews:	[...previousResult.reviews,	...newReviews]

						}

				}

		})

}

We	filter	out	all	of	the	reviews	that	are	already	present	in		previousResult.reviews	.	We	can	test	it	out	by	setting	a
	skip		that’s	too	low,	for	instance:

variables:	{	skip:	reviews.length	-	5	},

Now	when	we	scroll	down,	we	should	have	15	total	reviews	on	the	page	instead	of	20	and	a	React	duplicate		key	
error.

It	seems	strange	at	first,	but	subtracting	some	number	from	the	length	is	a	good	idea	to	leave	in	the	code!	It	makes
sure—in	the	case	in	which	some	of	the	first	10	items	are	deleted—that	we	don’t	miss	any	items.	If	we	still	want	10	new
items	to	(usually)	show	up	when	we	scroll	down,	then	we	can	also	change		limit		to	15:

variables:	{	skip:	reviews.length	-	5,	limit:	15	},

The	final	issue	is	that	we	get	an	error	when	we	try	to	add	or	delete	a	review:

Error:	Can't	find	field	reviews({})	on	object	(ROOT_QUERY)	{

"chapters":	[

				{

						"type":	"id",

						"id":	"Chapter:-3",

						"generated":	false

				},

				...

],

Chapter	6:	React

146

		"currentUser":	{

				"type":	"id",

				"id":	"$ROOT_QUERY.currentUser",

				"generated":	true

		},

		"reviews({\"skip\":0,\"limit\":10})":	[

				{

						"type":	"id",

						"id":	"Review:5aa04e9ec3e315449011604c",

						"generated":	false

				},

				...

In	our		withAddReview		and		withDeleteMutation		HOCs’		update		functions,	we’re	trying	to	read		REVIEWS_QUERY		from	the
store.	Since	we’re	not	specifying	variables	there,	it	looks	in	the	store	for	the	root	query	field		reviews({})	,	with	no
arguments.	And	we	don’t	have	that	in	our	store,	because	we’ve	never	done	a		REVIEWS_QUERY		without	arguments—
we’ve	only	done	it	with	a		skip		and		limit	.	The	error	message	prints	out	the	current	Apollo	store’s	state,	and	we	can
see	that	our		reviews		query	has	both	arguments:

"reviews({\"skip\":0,\"limit\":10})":	[

We	need	to	provide	the	same	arguments	to		store.readQuery		so	that	Apollo	knows	which	field	on		ROOT_QUERY		to	read
from:

	src/components/ReviewForm.js	

const	withAddReview	=	graphql(ADD_REVIEW_MUTATION,	{

		props:	({	ownProps:	{	user	},	mutate	})	=>	({

				addReview:	(text,	stars)	=>	{

						mutate({

								...

								update:	(store,	{	data:	{	createReview:	newReview	}	})	=>	{

										const	query	=	{

												query:	REVIEWS_QUERY,

												variables:	{	skip:	0,	limit:	10	}

										}

										const	data	=	store.readQuery(query)

										data.reviews.unshift(newReview)

										store.writeQuery({	...query,	data	})

								}

						})

				}

		})

})

	src/components/Review.js	

const	withDeleteMutation	=	graphql(DELETE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

				delete:	id	=>

						mutate({

								...

								update:	store	=>	{

										const	query	=	{

												query:	REVIEWS_QUERY,

												variables:	{	skip:	0,	limit:	10	}

										}

										let	data	=	store.readQuery(query)

										remove(data.reviews,	{	id	})

										store.writeQuery({	...query,	data	})

										...

								}

						})

		})

Chapter	6:	React

147

https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0
https://github.com/GraphQLGuide/guide/compare/16_0.2.0...17_0.2.0

})

Now	Apollo	can	successfully	read	and	write	to	the	store,	and	our	optimistic	updates	will	work	again.

What	happens	when		skip		changes	to	10	or	20?	Do	we	need	to	also	update	our	calls	to		readQuery	?	It	turns	out	that
we	don’t	need	to—when	we	call		fetchMore	,	the	additional	results	get	added	to	the	store	under	the	original	root	query
field.	We	can	see	this	is	the	case	by	scrolling	down,	opening	Apollo	devtools	->	Cache,	and	looking	at		ROOT_QUERY	:

Cursors

If	you’re	jumping	in	here,		git	checkout	17_0.2.0		(tag	17_0.2.0,	or	compare	17...18)

Subsections:

after
orderBy

Cursor-based	pagination	uses	a	cursor—a	pointer	to	where	we	are	in	a	list.	With	cursors,	the	schema	looks	different
from	the	Guide	schema	we’ve	been	working	with.	Our	queries	could	look	something	like:

{

		listReviews	(cursor:	$cursor,	limit:	$limit)	{

				cursor

				reviews	{

						...ReviewEntry

				}

		}

}

Chapter	6:	React

148

https://github.com/GraphQLGuide/guide/tree/17_0.2.0
https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0

Each	query	comes	back	with	a	cursor,	which	we	then	include	as	an	argument	in	our	next	query.	A	cursor	usually
encodes	both	the	ID	of	the	last	item	and	the	list’s	sort	order,	so	that	the	server	knows	what	to	return	next.	For
instance,	if	the	first	10	reviews	ended	with	a	review	that	had	an	ID	of		100	,	and	the	list	was	ordered	by	most	recently
created,	the	cursor	could	be		100:createdAt_DESC	,	and	the	query	could	be:

{

		listReviews	(cursor:	"100:createdAt_DESC",	limit:	10)	{

				cursor

				reviews	{

						...ReviewEntry

				}

		}

}

It	would	return:

{

		"data":	{

				"listReviews":	{

						"cursor":	"90:createdAt_DESC",

						"reviews":	[{

								"id":	"99"

								...

						},

						...

						{

								"id":	"90"

								...

						}]

				}

		}

}

And	then	our	next	query	would	be		listReviews	(cursor:	"90:createdAt_DESC",	limit:	10)	.

This	is	a	simple	version	of	cursors.	If	we’re	working	with	a	server	that	follows	the	Relay	Cursor	Connections	spec	(with
	edges		and		node	s	and		pageInfo	s),	we	can	follow	this	example	for	querying	it.

after

Let’s	implement	a	version	of	pagination	that	has	the	same	information—last	ID	and	sort	order—but	works	within	the
Guide	schema.	We	can	see	in	Playground	that	there	are	a	couple	of	arguments	we	haven’t	used	yet—	after		and
	orderBy	:

enum	ReviewOrderBy	{

		createdAt_ASC	

		createdAt_DESC

}

#	To	paginate,	use	page,	skip	&	limit,	or	after	&	limit

reviews(limit:	Int,	page:	Int,	skip:	Int,	after:	ObjID,	orderBy:	ReviewOrderBy):	[Review!]

First,	let’s	use	the	last	review’s	ID	for		after	,	and	remove		skip	:

	src/components/ReviewList.js	

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	{

				errorPolicy:	'all',

				variables:	{	limit:	10	},

				notifyOnNetworkStatusChange:	true

		},

		props:	({	data:	{	reviews,	fetchMore,	networkStatus	}	})	=>	({

Chapter	6:	React

149

https://facebook.github.io/relay/graphql/connections.htm
https://www.apollographql.com/docs/react/recipes/pagination.html#cursor-pages
https://api.graphql.guide/play
https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0

				reviews,

				networkStatus,

				loadMoreReviews:	()	=>	{

						if	(!reviews)	{

								return

						}

						const	lastId	=	reviews[reviews.length	-	1].id

						return	fetchMore({

								variables:	{	after:	lastId	},

It’s	possible	that	our	scroll	handler	(which	calls		loadMoreReviews)	will	fire	before	the	results	from	the	initial	reviews
query	has	completed,	in	which	case		reviews		will	be		undefined	,	and	we	do	nothing.

We	also	have	to	remove		skip		from		withAddReview		and		withDeleteMutation	,	and	update	the	query:

	src/graphql/Review.js	

query	ReviewsQuery($after:	ObjID,	$limit:	Int)	{

		reviews(after:	$after,	limit:	$limit)	{

It	works!	And	it’s	so	precise	that	we	don’t	have	to	worry	about	things	getting	added	or	deleted	between		fetchMore	s.
We	can	even	take	out	that	filtering	code	in		updateQuery	!	[What	was	the	runtime	of	that	thing	anyway?	It	was	so	big
that	author	Loren	was	tempted	to	prematurely	optimize	with	a	hash	 .]	One	might	be	concerned	about	the	possibility
of	the	review	we’re	using	as	a	cursor	being	deleted,	but	some	server	implementations	cover	this	case—the	Guide	API
is	backed	by	MongoDB,	which	has	IDs	that	are	comparable	based	on	order	of	creation,	so	the	server	can	still	find	IDs
that	were	created	before	or	after	the	deleted	ID.

orderBy

Next	let’s	figure	out	how	to	get	sort	order	working	as	well.	The	two	possible	values	are		createdAt_DESC		(newest
reviews	first,	the	default)	and		createdAt_ASC	.	If	we	put	a	“Newest/Oldest”	select	box	in		<Reviews>	,	then	we	can	pass
the	value	down	to		<ReviewList>		to	use	in	the	query’s		variables	:

	src/components/Reviews.js	

import	{	MenuItem	}	from	'material-ui/Menu'

import	{	FormControl	}	from	'material-ui/Form'

import	Select	from	'material-ui/Select'

class	Reviews	extends	Component	{

		state	=	{

				addingReview:	false,

				orderBy:	'createdAt_DESC'

		}

		handleOrderByChange	=	event	=>	{

				this.setState({	orderBy:	event.target.value	})

		}

		render()	{

				...

										<header	className="Reviews-header">

												...

												<FormControl>

														<Select

																value={this.state.orderBy}

																onChange={this.handleOrderByChange}

																displayEmpty

														>

																<MenuItem	value="createdAt_DESC">Newest</MenuItem>

																<MenuItem	value="createdAt_ASC">Oldest</MenuItem>

														</Select>

												</FormControl>

Chapter	6:	React

150

https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0
https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0

										</header>

								</div>

								<ReviewList	user={user}	orderBy={this.state.orderBy}	/>

In		<ReviewList>	,	we	need	our		withReviews		HOC	to	have	access	to	the	props.	We	can	use	the	function	form	of
	options		that	we	used	back	in		<Section>	.	The	function	gets	the	props,	from	which	we	take		orderBy	:

	src/components/ReviewList.js	

ReviewList.propTypes	=	{

		reviews:	PropTypes.arrayOf(propType(REVIEW_ENTRY)),

		user:	PropTypes.object,

		orderBy:	PropTypes.string.isRequired

}

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	({	orderBy	})	=>	({

				errorPolicy:	'all',

				variables:	{	limit:	10,	orderBy	},

				notifyOnNetworkStatusChange:	true

		}),

The	select	input	now	works—when	we	change	it	to	“Oldest”,	the	query	variable	updates,	and	a	different	list	of	reviews
loads.	When	we	go	back	to	“Newest”,	the	original	list	immediately	appears,	because	Apollo	has	that	list	cached	under
the	original	set	of	variables.	We	can	see	in	devtools	that	both	lists	are	indeed	cached:

But	we’ve	got	the	below	issue	again!

Error:	Can’t	find	field	reviews({"limit":10})	on	object	(ROOT_QUERY)

Whenever	we	change	the	variables	we’re	using	with		REVIEWS_QUERY	,	we	have	to	change	our	calls	to		readQuery		in	our
mutation	HOCs.	First		withAddReview	:	what	value	of		orderBy		do	we	use?	We	don’t	want	a	new	review	to	appear	at
the	top	of	an	“Oldest”	list—we	always	want	it	to	appear	at	the	top	of	the	“Newest”	list.	So	we	use		createdAt_DESC	:

	src/components/ReviewForm.js	

Chapter	6:	React

151

https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0
https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0

const	withAddReview	=	graphql(ADD_REVIEW_MUTATION,	{

		props:	({	ownProps:	{	user	},	mutate	})	=>	({

				addReview:	(text,	stars)	=>	{

						mutate({

								...

								update:	(store,	{	data:	{	createReview:	newReview	}	})	=>	{

										const	query	=	{

												query:	REVIEWS_QUERY,

												variables:	{	limit:	10,	orderBy:	'createdAt_DESC'	}

										}

										const	data	=	store.readQuery(query)

Now	if	we	switch	to	“Oldest”,	add	a	review,	and	switch	back	to	“Newest”,	it	will	show	up	at	the	top.	Next	is
	withDeleteMutation	—we	want	to	remove	the	review	from	the	current	list.	We	can	get	the	current	list	order	by	passing
it	down	from		ReviewList		and	then	to		delete()	:

	src/components/ReviewList.js	

render()	{

		const	{	reviews,	user,	orderBy	}	=	this.props

		...

				<Review

						key={review.id}

						review={review}

						user={user}

						orderBy={orderBy}

				/>

	src/components/Review.js	

class	Review	extends	Component	{

		...

		delete	=	()	=>	{

				this.closeDeleteConfirmation()

				this.props.delete(this.props.review.id,	this.props.orderBy).catch(e	=>	{

						if	(find(e.graphQLErrors,	{	message:	'unauthorized'	}))	{

								alert('ח �♀�✋ 	You	can	only	delete	your	own	reviews!')

						}

				})

...

const	withDeleteMutation	=	graphql(DELETE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

				delete:	(id,	orderBy)	=>

						mutate({

								variables:	{	id	},

								optimisticResponse:	{

										removeReview:	true

								},

								update:	store	=>	{

										const	query	=	{

												query:	REVIEWS_QUERY,

												variables:	{	limit:	10,	orderBy	}

										}

										let	data	=	store.readQuery(query)

										remove(data.reviews,	{	id	})

										store.writeQuery({	...query,	data	})

Updating	multiple	queries
If	you’re	jumping	in	here,		git	checkout	18_0.2.0		(tag	18_0.2.0).	Code	from	this	section	isn’t	included	in	future
tags.

Chapter	6:	React

152

https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0
https://github.com/GraphQLGuide/guide/compare/17_0.2.0...18_0.2.0
https://github.com/GraphQLGuide/guide/tree/18_0.2.0

We’ve	been	assuming	the	list	of	reviews	is	so	long	that	we	can’t	scroll	down	enough	to	reach	the	end.	When	we
deleted	a	review,	we	removed	it	from	the	current	list,	but	not	the	other.	Because	if	it’s	on	Newest	and	the	list	is	huge,
then	it	won’t	also	be	on	Oldest.	But	when	we’re	dealing	with	smaller	lists,	it	might	be	on	both	lists.	Let’s	remove	it	from
both.

We	know	there	will	always	be	a	list	of	reviews	in	the	store	ordered	by		createdAt_DESC		because	that’s	the	default.	We
don’t	know	whether	there	will	be	a	list	ordered	by		createdAt_ASC	.	If	there	isn’t,		store.readQuery		will	throw	an	error.
So	we’ll	first	read	and	write		DESC	,	and	then	we’ll	try	reading	and	writing		ASC	:

	src/components/Review.js	

const	withDeleteMutation	=	graphql(DELETE_REVIEW_MUTATION,	{

		props:	({	mutate	})	=>	({

				delete:	id	=>

						mutate({

								variables:	{	id	},

								optimisticResponse:	{

										removeReview:	true

								},

								update:	store	=>	{

										const	query	=	{

												query:	REVIEWS_QUERY,

												variables:	{	limit:	10,	orderBy:	'createdAt_DESC'	}

										}

										let	data	=	store.readQuery(query)

										remove(data.reviews,	{	id	})

										store.writeQuery({	...query,	data	})

										query.variables.orderBy	=	'createdAt_ASC'

										try	{

												data	=	store.readQuery(query)

												remove(data.reviews,	{	id	})

												store.writeQuery({	...query,	data	})

										}	catch	(e)	{}

We	can	also	stop	passing	in		orderBy	.

If	we	can	scroll	through	our	entire	list,	then	any	newly	added	item	should	go	on	the	end	of	the	Oldest	list—not	just	the
beginning	of	the	Newest	list	as	we’re	doing	currently.	So	let’s	write	the	new	review	to	the		orderBy:	'createdAt_ASC'	
list:

	src/components/ReviewForm.js	

const	withAddReview	=	graphql(ADD_REVIEW_MUTATION,	{

		props:	({	ownProps:	{	user	},	mutate	})	=>	({

				addReview:	(text,	stars)	=>	{

						mutate({

								...

								update:	(store,	{	data:	{	createReview:	newReview	}	})	=>	{

										const	query	=	{

												query:	REVIEWS_QUERY,

												variables:	{	limit:	10,	orderBy:	'createdAt_DESC'	}

										}

										let	data	=	store.readQuery(query)

										data.reviews.unshift(newReview)

										store.writeQuery({	...query,	data	})

										query.variables.orderBy	=	'createdAt_ASC'

										try	{

												data	=	store.readQuery(query)

												data.reviews.push(newReview)

												store.writeQuery({	...query,	data	})

										}	catch	(e)	{}

								}

Chapter	6:	React

153

https://github.com/GraphQLGuide/guide/compare/18_0.2.0...19_0.2.0
https://github.com/GraphQLGuide/guide/compare/18_0.2.0...19_0.2.0

That	wasn’t	too	hard—we’re	updating	two	queries	when	deleting	and	two	when	creating.	But	imagine	if	we	had	more
sort	orders—like	last	updated	or	number	of	stars—and	added	filters—like	number	of	stars	or	sentences:

#	orderBy

createdAt_DESC

createdAt_ASC

updatedAt_DESC

updatedAt_ASC

stars_DESC

stars_ASC

#	minStars

1

2

3

4

5

#	minSentences

1

2

3

4

5

Now	when	there’s	a	change,	there	are	many	more	lists	in	the	cache	we	might	need	to	update:

orderBy:	createdAt_DESC,	minStars:	1,	minSentences:	1

orderBy:	createdAt_DESC,	minStars:	1,	minSentences:	2

orderBy:	createdAt_DESC,	minStars:	1,	minSentences:	3

orderBy:	createdAt_DESC,	minStars:	1,	minSentences:	4

orderBy:	createdAt_DESC,	minStars:	1,	minSentences:	5

orderBy:	createdAt_DESC,	minStars:	2,	minSentences:	1

orderBy:	...

In	total,	there	are		6	x	5	x	5	=	150		possibilities.	That’s	a	lot	of	updating	to	do.	Not	only	that,	but	we	have	to	add	in
some	logic—for	instance,	if	a	new	review	is	submitted	with	4	sentences	and	4	stars,	we	don’t	want	to	also	add	it	to
any	of	the		minStars:	5		or		minSentences:	5		filtered	lists.

When	our	cache-updating	code	gets	this	complicated,	we	can	use		apollo-link-watched-mutation		to	simplify	things.
With	it,	we	define	a	function	that,	given	the	mutation	and	the	query,	returns	a	new	query	result.	And	the	package	takes
care	of	calling	our	function	as	many	times	as	it	needs	to	(for	as	many	variations	of	the	query	variables	exist	in	the
store)	as	well	as	reading	from	and	writing	to	the	store.	We	won’t	actually	use	this	in	our	app,	but	here’s	how	we	would
implement	it:

npm	install	apollo-link-watched-mutation

	src/index.js	:

import	{	ApolloLink	}	from	'apollo-link'

import	{	getWatchedMutationLink	}	from	'./lib/watchedMutationLink'

const	cache	=	new	InMemoryCache()

const	link	=	ApolloLink.from([

		getWatchedMutationLink(cache),

		errorLink,

		networkLink

])

Chapter	6:	React

154

https://github.com/haytko/apollo-link-watched-mutation

	lib/watchedMutationLink.js	:

import	WatchedMutationLink	from	'apollo-link-watched-mutation'

export	const	getWatchedMutationLink	=	cache	=>

		new	WatchedMutationLink(cache,	{

				DeleteReview:	{

						ReviewsQuery:	({	mutation,	query:	{	result	}	})	=>	{

								...

						},

						UserQuery:	({	mutation,	query:	{	result	}	})	=>	{

								...

						}

				},

				AddReview:	{

						ReviewsQuery:	({	mutation,	query	})	=>	{

								...

						}

				}

		})

We	would	also	remove	the		update		functions	from	our		mutate()		calls	in	our		withAddReview		and
	withDeleteMutation		HOCs.

The	first	arg	to	the		WatchedMutationLink		constructor	is	our	cache,	and	the	second	is	an	object	that	lists	each	mutation
and	the	queries	we	want	to	update	when	that	mutation	is	complete.	In	this	case,	the	mutation	named		DeleteReview	
updates		ReviewsQuery		and		UserQuery	,	and	the		AddReview		mutation	updates		ReviewsQuery	.	At	first,	looking	at	our
deletion	update	function,	we	might	think	to	update		ReviewsQuery		and		ReadUserFavorites	:

	src/components/Review.js	

const	READ_USER_FAVORITES	=	gql`

		query	ReadUserFavorites	{

				currentUser	{

						id

						favoriteReviews	{

								id

						}

				}

		}

`

...

		update:	store	=>	{

				const	query	=	{

						query:	REVIEWS_QUERY,

						variables:	{	limit:	10,	orderBy:	'createdAt_DESC'	}

				}

				let	data	=	store.readQuery(query)

				remove(data.reviews,	{	id	})

				store.writeQuery({	...query,	data	})

				query.variables.orderBy	=	'createdAt_ASC'

				try	{

						data	=	store.readQuery(query)

						remove(data.reviews,	{	id	})

						store.writeQuery({	...query,	data	})

				}	catch	(e)	{}

				data	=	store.readQuery({	query:	READ_USER_FAVORITES	})

				remove(data.currentUser.favoriteReviews,	{	id	})

				store.writeQuery({	query:	READ_USER_FAVORITES,	data	})

		}

Chapter	6:	React

155

However,		ReadUserFavorites		is	only	used	to	write	data	to	the	store	in	this	update	function—it	is	not	a	watched	query
(a	watched	query	is	a	query	attached	to	a	React	component	with	a		<Query>		or	a		graphql()		HOC).
	WatchedMutationLink		goes	through	all	the	watched	queries	and	calls	functions	of	the	same	name	in	our	config,	so	if
we	had	such	a	function,	it	would	never	get	called:

new	WatchedMutationLink(cache,	{

		DeleteReview:	{

				ReviewsQuery:	({	mutation,	query:	{	result	}	})	=>	{

						//	this	function	gets	called

				},

				ReadUserFavorites:	({	mutation,	query:	{	result	}	})	=>	{

						//	this	function	never	gets	called

				}

What	we’re	trying	to	update	is	the		favoriteCount		in	the		<Reviews>		header,	and	that’s	calculated	from	the		user	
prop,	which	is	fetched	by	the		UserQuery	,	so	we’ll	add	a		UserQuery		update	function	to	our	config	object.	Here	are	the
	ReviewsQuery		and		UserQuery		functions	filled	in:

import	remove	from	'lodash/remove'

new	WatchedMutationLink(cache,	{

		DeleteReview:	{

				ReviewsQuery:	({	mutation,	query:	{	result	}	})	=>	{

						const	idBeingDeleted	=	mutation.variables.id

						remove(result.reviews,	{

								id:	idBeingDeleted

						})

						return	result

				},

				UserQuery:	({	mutation,	query:	{	result	}	})	=>	{

						const	idBeingDeleted	=	mutation.variables.id

						remove(result.currentUser.favoriteReviews,	{	id:	idBeingDeleted	})

						return	result

				}

		}

})

The	update	function	is	given	the		mutation		that	just	occurred	and	the		query		that	is	being	watched.	The
	query.result		is	the	current	data	in	the	store—in	the	case	of		ReviewsQuery	,	a	list	of		reviews	.	The	value	we	return
from	the	function	is	the	updated	result,	and	contains	what	we	want	written	back	to	the	store.	Here	we	remove	the
deleted	review	from		result.reviews		and	return		result	.

Each	function	gets	called	as	many	times	as	there	are	matching	queries.	For	example,	if	there	were	all	150
combinations	of	possible		ReviewsQuery		arguments	in	the	store,	our		ReviewsQuery()		function	would	be	called	150
times,	and	the	value	of		result.reviews		would	be	a	different	list	of	reviews	each	time.

Updating	after		AddReviews		is	more	complicated.	We	don’t	have	to	worry	about	the		favoriteCount	,	because	a	new
review	hasn’t	been	favorited,	but	the	logic	for	updating		ReviewsQuery		lists	is	much	longer	than	our	above	removal
logic:

import	findIndex	from	'lodash/findIndex'

new	WatchedMutationLink(cache,	{

		DeleteReview:	{	...	},

		AddReview:	{

				ReviewsQuery:	({	mutation,	query	})	=>	{

						const	newReview	=	mutation.result.data.createReview

						const	{	orderBy,	minStars,	minSentences	}	=	query.variables

						const	{	reviews	}	=	query.result

						const	countSentences	=	({	text	})	=>	text.match(/\w[.?!](\s|$)/g).length

						if	(

								newReview.stars	<	minStars	||

Chapter	6:	React

156

								countSentences(newReview)	<	minSentences

)	{

								//	don't	add	to	store

								return

						}

						switch	(orderBy)	{

								case	'createdAt_DESC':

								case	'updatedAt_DESC':

										reviews.unshift(newReview)

										break

								case	'createdAt_ASC':

								case	'updatedAt_ASC':

										reviews.push(newReview)

										break

								case	'stars_DESC':

										const	insertBefore	=	findIndex(

												reviews,

												review	=>	review.stars	<=	newReview.stars

)

										reviews.splice(insertBefore	-	1,	0,	newReview)

										break

								case	'stars_ASC':

										const	insertBefore	=	findIndex(

												reviews,

												review	=>	review.stars	>=	newReview.stars

)

										reviews.splice(insertBefore	-	1,	0,	newReview)

										break

						}

						//	return	the	query	result,	including	the	modified	query.result.reviews

						return	query.result

				}

		}

})

Depending	on	what	the	query	variables	are	(orderBy	,		minStars	,	and		minSentences),	we	have	to	decide	whether	to
add	the	new	review	to	the	list,	and	if	yes,	where	to	add	it.	If	the	new	review’s	number	of	stars	or	sentences	is	below
the	minimum,	we	return		undefined		so	that		WatchedMutationLink		knows	to	not	alter	the	store.	If	the	sort	order	is	by
	createdAt		or		updatedAt	,	we	add	it	to	the	top	or	bottom	of	the	list.	And	if	the	sort	order	is	by	number	of	stars,	we	go
through	the	list	to	find	the	right	location.

Local	state
Section	contents:

Direct	writes
Local	mutations

In	most	of	the	apps	we	build,	the	majority	of	our	state	(the	data	that	backs	our	UI)	is	remote	state—it	comes	from	a
server	and	is	saved	in	a	database.	But	some	of	our	state	doesn’t	come	from	the	server	and	isn’t	stored	in	a	database
—it	originates	locally	on	the	client	and	stays	there.	This	type	of	data	is	called	our	local	state.	One	example	of	local
state	is	a	user	setting	that	for	whatever	reason	we	didn’t	want	to	send	to	the	server	to	persist.	Another	example	is	data
from	a	device	API:	if	we	were	making	a	navigation	app,	we	would	want	to	display	the	device’s	location	and	speed.	A
simple	solution	would	be	to	put	the	state	in	a	variable,	for	instance		window.gps	:

navigator.geolocation.watchPosition(position	=>	{

		window.gps	=	position.coords

}

Chapter	6:	React

157

And	then	we’d	reference	that	variable	when	we	needed	it.	However,	there	are	a	couple	of	issues	with	this	solution.
One	is	that	we’d	like	be	able	to	trigger	view	updates	when	the	data	changes.	We	could	move	it	to	a	component’s
	this.state	,	but	A)	when	the	component	is	unmounted,	we	lose	the	data,	and	B)	if	we	need	the	data	in	different
places	in	the	app,	we’d	have	to	pass	it	around	as	a	prop	a	lot.	The	other	issue	is	the	lack	of	structure—with	a	large
app	and	many	developers,	it	gets	hard	to	know	what	state	is	out	there	in	variables	scattered	around	the	codebase,	the
data	format	of	each	variable,	and	how	each	should	be	modified.	A	popular	solution	that	addresses	both	of	these
issues	is	Redux,	a	library	for	maintaining	global	state.

Global	state	means	state	accessible	from	anywhere	in	your	app,	as	opposed	to	component	state,	which	is
accessible	as		this.state		inside	the	component	in	which	it’s	created,	or	as	a	prop	if	the	data	is	passed	to
children.	Global	vs	component	state	is	tangential	to	local	vs	remote	state.	The	former	is	about	where	on	the
client	the	state	is	kept,	and	the	latter	is	about	whether	or	not	the	data	is	stored	on	the	server.

Redux	provides	a	structure	for	reading	and	modifying	data,	and	it	re-renders	components	when	the	data	changes.
While	Redux	is	great,	Apollo	has	its	own	solution	to	local	state	which	addresses	the	same	issues.	Choosing	the
system	we’re	already	using	for	local	state	will	make	it	simpler	to	implement	and	result	in	more	understandable,
concise	code.

Apollo	stores	local	state	alongside	remote	state	in	the	Apollo	store.	One	guess	as	to	how	we	read	it	out	of	the	store...
with	GraphQL	queries!	All	we	do	is	add	a		@client		directive:

query	LocationQuery	{

		gps	@client	{

				lat

				lng

		}

}

There	are	two	ways	to	update	our	local	state—direct	writes	or	mutations.	Direct	writes	are	easy	to	do—we	just	call	the
	apollo.writeData()		function,	which	writes	data	to	the	store.	Mutations	take	some	work	to	set	up,	but	provide	structure
that’s	useful	in	a	large	codebase	or	when	working	with	a	team.	They	also	allow	for	reading	from	the	store,	which	we
need	to	do	sometimes	in	order	to	figure	out	what	to	write.

Direct	writes

If	you’re	jumping	in	here,		git	checkout	18_0.2.0		(tag	18_0.2.0,	or	compare	18...19)

	apollo.writeData()		simply	takes	an	object	with	a		data		property	and	writes	the	data	to	the	store	at	the	root	level.	So
if	we	wanted	to	be	able	to	make	the	root		gps	@client		query	above,	we	would	do:

navigator.geolocation.watchPosition(position	=>	{

		apollo.writeData({	data:	{	gps:	position.coords	}	})

}

A	place	in	our	app	where	a	simple	piece	of	local	state	would	be	useful	is	during	login.	Right	now,	our		withUser()	
HOC	provides	a		loggingIn		boolean	that’s	true	when	the		currentUser		query	is		loading	.	But	it	would	be	more
accurate	if		loggingIn		were	true	as	soon	as	the	user	clicks	the	“Sign	in”	button.	If	we	had	a	piece	of	state	called
	loginInProgress		that	was	true	while	the	user	went	through	the	Auth0	login	process,	then	we	could	update		loggingIn	
to	be		loading	||	loginInProgress	:

	src/lib/withUser.js	

export	const	USER_QUERY	=	gql`

		query	UserQuery	{

				currentUser	{

						id

						firstName

						name

Chapter	6:	React

158

https://redux.js.org/
https://github.com/GraphQLGuide/guide/tree/18_0.2.0
https://github.com/GraphQLGuide/guide/compare/18_0.2.0...19_0.2.0
https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0

						username

						email

						photo

						hasPurchased

						favoriteReviews	{

								id

						}

				}

				loginInProgress	@client

		}

`

export	const	withUser	=	graphql(USER_QUERY,	{

		props:	({	data:	{	currentUser,	loading,	loginInProgress	}	})	=>	({

				user:	currentUser,

				loggingIn:	loading	||	loginInProgress

		})

})

We	update	with		writeData()	:

	src/lib/auth.js	

export	const	login	=	()	=>	{

		apollo.writeData({	data:	{	loginInProgress:	true	}	})

		auth0Login({

				onCompleted:	e	=>	{

						apollo.writeData({	data:	{	loginInProgress:	false	}	})

						if	(e)	{

								console.error(e)

								return

						}

						apollo.reFetchObservableQueries()

				}

		})

}

We	make	sure	to	set	it	to		false		first	thing	in		onCompleted		so	that	it	runs	even	when	there’s	an	error.	Lastly,	we	need
to	set	up	local	state:

	src/lib/apollo.js	

export	const	apollo	=	new	ApolloClient({	link,	cache,	resolvers:	{}	})

const	initializeCache	=	()	=>	{

		cache.writeData({

				data:	{

						loginInProgress:	false

				}

		})

}

initializeCache()

apollo.onResetStore(initializeCache)

First	we	add	a		resolvers		object	to		ApolloClient		so	that	it	knows	we’re	using	local	state.	Then	we	make	a	function	to
initialize	the	cache	by	setting		loginInProgress		to		false	,	and	we	call	the	function	both	on	pageload	and	when	the
store	is	reset.

Now	it’s	working—when	we	click	the	“Sign	in”	button,	we	can	see	the	spinner	while	the	Auth0	popup	is	open	 .

Local	mutations

Chapter	6:	React

159

https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0
https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0

If	you’re	jumping	in	here,		git	checkout	19_0.2.0		(tag	19_0.2.0,	or	compare	19...20)

Now	let’s	add	a	local-state	feature	that	uses	a	mutation.	Currently,	whenever	we	switch	between	sections,	one	of	two
things	happens	to	our	scroll	position:

If	we	don’t	have	the	section	content	on	the	client,		scrollY		is	set	to	0	when	the	loading	skeleton	is	displayed.
If	we	do	have	the	section	content	on	the	client,		scrollY		remains	the	same.

It	would	be	nice	for	the	user	if,	when	switching	back	to	a	section	they	were	previously	reading,	the	scroll	position
updates	to	where	they	were.	So	let’s	save	their	last	position	for	each	section	in	local	state!	We	could	implement	this
feature	with	direct	writes,	but	let’s	see	what	the	more	structured	method—a	local	mutation—looks	like.

When	implementing	a	new	feature,	the	best	place	to	start	is	often	the	schema.	Thus	far	we’ve	been	using	an	existing
schema	defined	on	the		api.graphql.guide		server.	But	we’re	writing	a	client-side	mutation,	so	the	schema	for	it	will
live	on	the	client,	and	Apollo	will	combine	the	client	and	server	schemas	into	one,	which	we’ll	be	able	to	see	in	the
devtools.

Let’s	call	the	mutation		setSectionScroll	,	and	all	it	needs	is	the	section	id	and		scrollY	:

type	Mutation	{

		setSectionScroll(id:	String!,	scrollY:	Int!):	Boolean

}

Normally	a	mutation	that	updates	a	type	will	return	that	type—in	this	case	a		Section	:

type	Mutation	{

		setSectionScroll(id:	String!,	scrollY:	Int!):	Section

}

And	then	we’d	request	the		id		and	new		scrollY		so	that	Apollo	could	update	the	store:

mutation	{

		setSectionScroll(id:	"foo",	scrollY:	10)	{

				id

				scrollY

		}

}

But	this	mutation	will	be	run	on	the	client,	and	it	will	be	modifying	the	store.	So	all	we	need	to	return	from	the	mutation
is		true		to	indicate	success.

We	pass	our	client-side	schema	to		ApolloClient()	:

	src/lib/apollo.js	

import	gql	from	'graphql-tag'

const	typeDefs	=	gql`

		type	Query	{

				loginInProgress:	Boolean

		}

		type	Mutation	{

				setSectionScroll(id:	String!,	scrollY:	Int!):	Boolean

		}

`

export	const	apollo	=	new	ApolloClient({

		link,

		cache,

		typeDefs,

		resolvers:	{}

})

Chapter	6:	React

160

https://github.com/GraphQLGuide/guide/tree/19_0.2.0
https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0
https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0

Every	schema	needs	to	define	a		Query		type,	so	we	put	our	top-level		loginInProgress		field	from	the	last	section.
Next	let’s	write	the		setSectionScroll		resolver:

export	const	apollo	=	new	ApolloClient({

		link,

		cache,

		typeDefs,

		resolvers:	{

				Mutation:	{

						setSectionScroll:	(_,	{	id,	scrollY	},	{	cache,	getCacheKey	})	=>	{

								const	cacheKey	=	getCacheKey({	__typename:	'Section',	id	})

								cache.writeData({	id:	cacheKey,	data:	{	scrollY	}	})

								return	true

						}

				}

		}

})

We’re	given	the		getCacheKey()		function	which	generates	the	store	ID	we	talked	about	in	the	Arbitrary	updates	section
—for	example		'Section:1-1'	.	Then	we	write	the	new		scrollY		to	the	cache	(just	another	term	for	the	store).

Now	let’s	add	a		<Mutation>		component	so	that	we	can	call	the	mutation:

	src/components/Section.js	

Section.propTypes	=	{

		...

		setScrollPosition:	PropTypes.func.isRequired

}

const	SET_SECTION_SCROLL_MUTATION	=	gql`

		mutation	SetSectionScroll($id:	String!,	$scrollY:	Int!)	{

				setSectionScroll(id:	$id,	scrollY:	$scrollY)	@client

		}

`

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		...

		<Mutation	mutation={SET_SECTION_SCROLL_MUTATION}>

				{setScrollPosition	=>	(

						<Section

								{...createProps(queryInfo)}

								viewedSection={viewedSection}

								setScrollPosition={setScrollPosition}

						/>

)}

		</Mutation>

}

Note	the		@client		in	the	document:		setSectionScroll(id:	$id,	scrollY:	$scrollY)	@client	.	It	tells	the	state	link	to
resolve	the	mutation	on	the	client	instead	of	passing	it	on	to	the	server.

Now	we	need		<Section>		to	call		setScrollPosition()	,	which	means	we	need	a	scroll	handler:

import	debounce	from	'lodash/debounce'

class	Section	extends	Component	{

		...

		componentDidMount()	{

				window.addEventListener('scroll',	this.handleScroll)

				if	(this.props.section)	{

						this.viewedSection(this.props.section.id)

				}

		}

		componentWillUnmount()	{

Chapter	6:	React

161

https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0

				clearTimeout(this.timeoutID)

				window.removeEventListener('scroll',	this.handleScroll)

		}

		handleScroll	=	debounce(()	=>	{

				if	(this.props.section.scrollY	===	window.scrollY)	{

						return

				}

				this.props.setScrollPosition({

						variables:	{

								id:	this.props.section.id,

								scrollY:	window.scrollY

						}

				})

		},	1000)

		...

}

When	the	component	mounts,	we	add	the	scroll	listener,	and	on	unmount,	we	remove	the	listener.	For	performance,
we	debounce	the	listener	(we	prevent	it	from	being	called	continuously,	waiting	until	the	user	has	stopped	scrolling	for
a	second).	Then	inside	the	listener,	we	call	the	mutation	(first	checking	to	make	sure	the		scrollY		has	changed).

It	now	works!	Well,	at	least	the	mutation	gets	called.	Which	we	wouldn’t	know	was	happening	correctly	unless	we
looked	at	the	devtools	mutation	log	and	cache:

Chapter	6:	React

162

https://css-tricks.com/the-difference-between-throttling-and-debouncing/

What’s	left	is:	when	the	section	changes,	updating	the	scroll	position	to	the	new	section’s		scrollY	.	For	that,	we	have
to	add	it	to	our	section	queries:

Section.propTypes	=	{

		section:	PropTypes.shape({

				...

				scrollY:	PropTypes.number

		}),

		...

}

const	SECTION_BY_ID_QUERY	=	gql`

		query	SectionContent($id:	String!)	{

				section(id:	$id)	{

						id

						content

						views

						scrollY	@client

				}

		}

`

const	SECTION_BY_CHAPTER_TITLE_QUERY	=	gql`

		query	SectionByChapterTitle($title:	String!)	{

				chapterByTitle(title:	$title)	{

						title

						section(number:	1)	{

								id

								content

								views

								scrollY	@client

						}

				}

		}

`

const	SECTION_BY_NUMBER_QUERY	=	gql`

		query	SectionByNumber($chapterNumber:	Int!,	$sectionNumber:	Int!)	{

				chapterByNumber(number:	$chapterNumber)	{

Chapter	6:	React

163

						number

						section(number:	$sectionNumber)	{

								id

								number

								title

								content

								views

								scrollY	@client

						}

				}

		}

`

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		...

		if	(state)	{

				query	=	SECTION_BY_ID_QUERY

				variables	=	{	id:	state.section.id	}

				createProps	=	({	data,	loading	})	=>	({

						section:	{

								...state.section,

								content:	get(data,	'section.content'),

								views:	get(data,	'section.views'),

								scrollY:	get(data,	'section.scrollY')

						},

						chapter:	state.chapter,

						loading

				})

		}

		...

}

And	then	use	the	new		section.scrollY		prop	inside	of		<Section>	:

class	Section	extends	Component	{

		...

		updateScrollPosition	=	()	=>	{

				window.scrollTo(0,	this.props.section.scrollY)

		}

		componentDidMount()	{

				window.addEventListener('scroll',	this.handleScroll)

				if	(this.props.section)	{

						this.viewedSection(this.props.section.id)

						this.updateScrollPosition()

				}

		}

		componentDidUpdate(prevProps)	{

				if	(!this.props.section)	{

						return

				}

				const	{	id	}	=	this.props.section

				const	sectionChanged	=	get(prevProps,	'section.id')	!==	id

				if	(sectionChanged)	{

						this.viewedSection(id)

						this.updateScrollPosition()

				}

		}

		...

}

We	call	our	new		updateScrollPosition()		method	when	we	first	mount	and	when	the	section	changes.	If	we	look	back
at	the	browser,	we’ll	see	a	lot	of	errors.	Above	the	errors	is	a	warning:

Chapter	6:	React

164

Missing	field	scrollY	in	{

		"id":	"1-7",

		"content":	...

Apollo	is	trying	to	read		scrollY		from	a	section	in	the	cache	and	can’t	find	it.	We	can	fix	this	by	giving	a	default	value
for		scrollY	,	which	we	do	in	a	resolver:

	src/lib/apollo.js	

export	const	apollo	=	new	ApolloClient({

		...

		resolvers:	{

				Section:	{

						scrollY:	()	=>	0

				},

				Mutation:	{	...	}

		}

})

We	can’t	use		cache.writeData()		like	we	did	with		loginInProgress		because		scrollY		isn’t	a	single	field	at	the
top	level—we	need	it	to	default	to	0	for	any		Section		object.

Now	Apollo	will	first	look	in	the	store	for	a		Section	’s		scrollY	,	and	if	it’s	not	there,	fall	back	to	the	resolver	that
always	returns	zero.

We	can	test	to	see	if	everything’s	working:	when	we	load	the	preface,	scroll	down,	and	click	“Introduction”,	we	see	that
the	scroll	position	is	at	the	top,	and	then	when	we	click	“Preface”,	the	scroll	position	goes	back	down	to	where	we
were!

Looking	back,	we	can	see	how	local	mutations	provided	more	structure	than	direct	writes,	which	could	be	helpful
down	the	road.	Our	teammates	or	our	future	(forgetful)	selves	can	look	at	our		SET_SECTION_SCROLL_MUTATION		and	see
what	function	and	arguments	that		<Mutation>		provides,	whereas	with	direct	writes,	we	might	have	to	look	for	how	a
piece	of	local	state	is	used	(read	from	the	store)	in	order	to	figure	out	what	to	write	to	the	store.	Our	future	selves	can
also	look	at	the		withClientState()		call	in	order	to	see	all	the	options	for	local	mutations,	or	can	look	at	devtools	to
see	the	entire	schema,	with	local	mutations	included	at	the	bottom	of	the		Mutation		type:

The	other	reason	to	use	local	mutations	is	when	we	need	to	read	from	the	store	in	order	to	write.	We	didn’t	need	to
with		setSectionScroll	,	but	if	we	had	a		clapForSection		mutation,	we	would:

Chapter	6:	React

165

https://github.com/GraphQLGuide/guide/compare/19_0.2.0...20_0.2.0

export	const	apollo	=	new	ApolloClient({

		...

		resolvers:	{

				...

				Mutation:	{

						clapForSection:	(_,	{	id	},	{	cache,	getCacheKey	})	=>	{

								const	cacheKey	=	getCacheKey({	__typename:	'Section',	id	})

								const	fragment	=	gql`

										fragment	clap	on	Section	{

												claps

										}

								`

								const	section	=	cache.readFragment({	fragment,	id:	cacheKey	})

								cache.writeFragment({	

										fragment,	

										id:	cacheKey,	

										data:	{

												claps:	section.claps	+	1

										}

								})

								return	true

						}

				}

		}

})

Here	we	read	a	fragment	containing		claps	,	the	field	we	need,	and	then	we	write	to	the	store	the	previous		claps	
plus	1.	We’re	using		cache.writeFragment	,	which	is	like		cache.writeData	,	but	validates	the		data		argument	to	make
sure	it	matches	the		fragment		argument.

REST
If	you’re	jumping	in	here,		git	checkout	20_0.2.0		(tag	20_0.2.0,	or	compare	20...21)

You	might	be	thinking,	“What	is	a	section	on	REST	doing	in	a	chapter	on	GraphQL	client	dev??”	The	thing	is,	not	all	of
our	colleagues	have	seen	the	light	of	GraphQL	yet,	so	they’re	still	making	REST	APIs!	 	And	we	might	want	to	use
them	in	our	app.	The	common	solution	is	for	your	backend	GraphQL	server	to	proxy	the	REST	API.	For	example,	the
server	will	add	a	query	to	the	schema:

type	Query	{

		githubStars

		...

		latestSatelliteImage(lon:	Float!,	lat:	Float!,	sizeInDegrees:	Float):	String

}

And	we	would	write	our	client	query:

query	WhereAmI	{

		latestSatelliteImage(lon:	-73.94,	lat:	40.7,	sizeInDegrees:	0.3)

}

And	when	the	server	received	our	query,	it	would	send	this	GET	request	to	NASA:

https://api.nasa.gov/planetary/earth/imagery/?lon=-73.94&lat=40.7&dim=0.3&api_key=DEMO_KEY

The	server	would	get	back	a	URL	of	an	image,	which	it	would	return	to	us,	which	we	would	put	in	the		src		of	an
			tag:

Chapter	6:	React

166

https://www.apollographql.com/docs/link/links/state.html#write-fragment
https://github.com/GraphQLGuide/guide/tree/20_0.2.0
https://github.com/GraphQLGuide/guide/compare/20_0.2.0...21_0.2.0
https://api.nasa.gov/planetary/earth/imagery/?lon=-73.94&lat=40.7&dim=0.3&api_key=DEMO_KEY

So	that’s	how	proxying	through	our	GraphQL	backend	works	(and	we’ll	go	into	more	detail	in	the	server	chapter).	But
what	if	our	backend	can’t	proxy	the	REST	API?	Maybe	we	don’t	have	control	over	the	backend,	or	maybe	some	less
common	reason	applies,	like	needing	to	reduce	load	on	the	server	or	needing	better	latency	(proxying	through	the
server	is	slightly	slower).	In	that	case,	we	can	use		apollo-link-rest		to	send	some	of	our	GraphQL	queries	as	REST
requests	to	a	REST	API	instead	of	to	our	GraphQL	server!

We	need	to	find	a	REST	API	to	use	in	our	Guide	app	so	that	we	can	learn	by	example	in	this	section	of	the	book	 .
Displaying	a	satellite	image	isn’t	useful,	but	displaying	the	temperature	in	the	header	might	conceivably	be	useful
(albeit	completely	unrelated	to	GraphQL).	If	we	google	“weather	api”,	the	first	result	is	OpenWeatherMap,	and	we
see	that	it’s	free	to	use—great.	Now	we	want	to	open	up	Playground	to	look	at	the	OpenWeatherMap’s	schema	to
figure	out	which	query	to	use.	But	it’s	a	REST	API!	And	REST	doesn’t	have	a	specified	way	of	reporting	what	the	API
can	do,	so	we	can’t	have	a	standard	tool	like	Playground	that	shows	us.	So	we	have	to	read	their	docs.	Let’s	use	their
current	weather	data	endpoint,		api.openweathermap.org/data/2.5/weather	,	which	looks	like	it	has	a	number	of	options
for	specifying	the	location	with	query	parameters:

	?q=[city	name]	

	?id=[city	id]	

	?lat=[latitude]&lon=[longitude]	

	?zip=[zip	code]	

Which	one	can	we	use?	We	don’t	know	the	client’s	city	or	GPS	coordinates	or	zip	code...	so	at	the	moment,	none	of
them!	There	are	a	couple	of	ways,	though,	to	get	the	user’s	location:

Query	an	IP	geolocation	API,	which	looks	up	the	client’s	IP	in	a	database	and	returns	that	IP’s	city	and
approximate	coordinates.

Chapter	6:	React

167

https://www.apollographql.com/docs/link/links/rest.html
https://openweathermap.org/current

Use	the	web	standard	geolocation	API,	which	according	to	caniuse	works	in	all	browsers	after	IE	8!	Except	for
Opera	Mini	 .

The	browser	API	is	more	precise,	easier	to	code,	and	gets	the	user’s	consent	via	a	built-in	permission	dialog.	So	let’s
do	that.	All	we	need	to	do	is	just		navigator.geolocation.getCurrentPosition	,	and	after	the	user	approves,	we	get	the
coordinates	in	a	callback:

window.navigator.geolocation.getCurrentPosition(

		({	coords:	{	latitude,	longitude	}	})	=>	{

				console.log(latitude,	longitude)

				//	logs:	40.7	-73.94

		}

)

Now	we	have	numbers	to	put	into	our	URI	format,	which	was:

	api.openweathermap.org/data/2.5/weather?lat=[latitude]&lon=[longitude]	

And	we	also	need	an	API	key,	which	their	docs	say	should	go	in	an		appid		query	param.	The	full	URL,	broken	down:

http://

api.openweathermap.org

/data/2.5/weather

?lat=40.7

&lon=-73.94

&appid=4fb00091f111862bed77432aead33d04

And	the	link:

http://api.openweathermap.org/data/2.5/weather?lat=40.7&lon=-73.94&appid=4fb00091f111862bed77432aead33d04

If	this	API	key	is	over	its	limit,	you	can	get	a	free	one	here.

We	get	a	response	like	this:

{

		"coord":	{	"lon":	-73.94,	"lat":	40.7	},

		"weather":	[

				{

						"id":	803,

						"main":	"Clouds",

						"description":	"broken	clouds",

						"icon":	"04n"

				}

],

		"base":	"stations",

		"main":	{

				"temp":	283.59,

				"pressure":	1024,

				"humidity":	66,

				"temp_min":	280.95,

				"temp_max":	285.95

		},

		"visibility":	16093,

		"wind":	{	"speed":	2.26,	"deg":	235.503	},

		"clouds":	{	"all":	75	},

		"dt":	1539575760,

		"sys":	{

				"type":	1,

				"id":	2121,

				"message":	0.0044,

				"country":	"US",

				"sunrise":	1539601626,

				"sunset":	1539641711

		},

		"id":	5125125,

		"name":	"Long	Island	City",

Chapter	6:	React

168

https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
https://caniuse.com/#search=geolocation
http://api.openweathermap.org/data/2.5/weather?lat=40.7&lon=-73.94&appid=4fb00091f111862bed77432aead33d04
https://home.openweathermap.org/users/sign_up

		"cod":	200

}

That’s	a	lot	of	stuff.	Since	it’s	not	GraphQL,	we	didn’t	know	what	we	were	going	to	get	back	until	we	tried	it,	unless	we
were	able	to	find	it	in	their	docs	(which,	eventually,	author	Loren	did—under	the	heading	“Weather	parameters	in	API
respond”).	Looking	through	the	response	JSON,	we	find		main.temp	,	which	is	a	weirdly	high	number,	so	we	might
suspect	it’s	Kelvin,	and	we	can	search	the	docs	to	confirm.	(In	a	GraphQL	API,	this	could	have	been	included	in	a
schema	comment,	and	we	wouldn’t	have	had	to	search	 .)

If	we	didn’t	have	Apollo,	we	would	use		fetch()		or		axios.get()		to	make	the	HTTP	request:

const	weatherEndpoint	=	'http://api.openweathermap.org/...'

const	response	=	await	fetch(weatherEndpoint)

const	data	=	await	response.json();

console.log(`It	is	${data.main.temp}	degrees	Kelvin`);

Run	in	browser

And	we	would	use	component	lifecycle	methods	and		setState		to	get	the	returned	data	into	our	JSX.	Or	if	we	wanted
the	data	cached	so	that	we	can	use	it	in	other	components	or	on	future	instances	of	the	current	component,	or	if	we
wanted	all	of	our	data	fetching	logic	separated	from	our	presentational	components,	we	might	use	Redux	instead.

However,	with		apollo-link-rest		we	can	get	Apollo	to	make	the	HTTP	request	for	us,	cache	the	response	data	for
future	use,	and	provide	the	data	to	our	components.	First,	we	set	up	the	link:

	src/lib/apollo.js	

import	{	ApolloLink,	split	}	from	'apollo-link'

import	{	RestLink	}	from	'apollo-link-rest'

...

const	restLink	=	new	RestLink({

		uri:	'https://api.openweathermap.org/data/2.5/'

})

const	link	=	ApolloLink.from([errorLink,	restLink,	networkLink])

Since	requests	flow	from	left	to	right	in	the	link	chain,	we	want	our		restLink		to	be	to	the	left	of		networkLink		(it	won’t
pass	on	REST	requests	to		networkLink	,	which	would	send	them	to	our	GraphQL	server).	And	since	responses	(and
errors)	flow	from	right	to	left,	we	want		restLink		to	be	to	the	right	of		errorLink		so	that	errors	from		restLink		go
through		errorLink	.

Let’s	add	a	temperature	component	in	the	header:

	src/components/App.js	

import	CurrentTemperature	from	'./CurrentTemperature'

...

<header	className="App-header">

		<StarCount	/>

		<Link	...	/>

		<CurrentUser	/>

		<CurrentTemperature	/>

</header>

And	now	for	its	implementation.	Let’s	start	with	the	query:

{

		weather(lat:	$lat,	lon:	$lon)

Chapter	6:	React

169

https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/fetch
https://github.com/axios/axios#example
https://codesandbox.io/s/814v12k739?expanddevtools=1&module=%2Fsrc%2Findex.js
https://redux.js.org/
https://www.apollographql.com/docs/link/links/rest.html
https://github.com/GraphQLGuide/guide/compare/20_0.2.0...21_0.2.0
https://github.com/GraphQLGuide/guide/compare/20_0.2.0...21_0.2.0

				@rest(

						type:	"WeatherReport"

						path:	"weather?appid=4fb00091f111862bed77432aead33d04&{args}"

)	{

				main

		}

}

Anything	with	the		@rest		directive		apollo-link-rest		will	resolve	itself.	We’ve	already	configured	the	link	with	the
base	of	the	URI,	so	here	we	give	the	rest	of	it.	Since	we’re	getting	back	an	object,	we	also	need	to	make	up	a	name
for	what	the	object’s	type	will	be	in	the	Apollo	store.	And	we	want	the		"main"		attribute	from	the	JSON	response,	so		{
main	}		is	our	selection	set.

If	we	want	to	be	even	more	explicit	about	which	data	we’re	using,	we	could	select	just		main.temp		instead	of	the	whole
	main		object.	But	when	we	want	to	select	fields	in	objects,	we	need	the	object	to	have	a	type,	so	we	add	an		@type	
directive:

query	TemperatureQuery	{

		weather(lat:	$lat,	lon:	$lon)

				@rest(

						type:	"WeatherReport"

						path:	"weather?appid=4fb00091f111862bed77432aead33d04&{args}"

)	{

				main	@type(name:	"WeatherMain")	{

						temp

				}

		}

}

Now	let’s	think	about	the	UX.	At	some	point	we	need	to	call		window.navigator.geolocation.getCurrentPosition	,	after
which	the	browser	prompts	the	user	to	share	their	location.	We	don’t	want	to	annoy	users	with	this	prompt	every	time
they	use	the	app,	so	let’s	start	out	with	a	button	and	go	through	these	steps:

Display	location	button
User	clicks	button	and	we	request	their	location	from	the	browser
User	gives	permission	through	browser	dialog
We	receive	the	location	and	make	the	query
We	receive	the	query	results	and	display	them

Here’s	the	shell	of	our	component	with	that	logic	and	our	lat/lon	state:

	src/components/CurrentTemperature.js	

import	React,	{	Component	}	from	'react'

import	{	Query	}	from	'react-apollo'

import	gql	from	'graphql-tag'

import	IconButton	from	'@material-ui/core/IconButton'

import	MyLocation	from	'@material-ui/icons/MyLocation'

class	CurrentTemperature	extends	Component	{

		state	=	{

				lat:	null,

				lon:	null

		}

		requestLocation	=	()	=>	{	...	}

		render()	{

				const	dontHaveLocationYet	=	!this.state.lat

				return	(

						<div	className="Weather">

								<Query

										query={TEMPERATURE_QUERY}

										skip={dontHaveLocationYet}

Chapter	6:	React

170

https://github.com/GraphQLGuide/guide/compare/20_0.2.0...21_0.2.0

										variables={{	lat:	this.state.lat,	lon:	this.state.lon	}}

								>

										{({	data,	loading	})	=>	{

												if	(dontHaveLocationYet)	{

														return	(

																<IconButton

																		className="Weather-get-location"

																		onClick={this.requestLocation}

																		color="inherit"

																>

																		<MyLocation	/>

																</IconButton>

)

												}

												return	data.weather.main.temp

										}}

								</Query>

						</div>

)

		}

}

const	TEMPERATURE_QUERY	=	gql`

		query	TemperatureQuery	{

				weather(lat:	$lat,	lon:	$lon)

						@rest(

								type:	"WeatherReport"

								path:	"weather?appid=4fb00091f111862bed77432aead33d04&{args}"

)	{

						main

				}

		}

`

export	default	CurrentTemperature

When	we	don’t	yet	have	the	user’s	location,	we	skip	running	the	query	and	show	the	location	button.	Once	we	do
have	the	location,	we	pass	it	to	our	query	and	display		data.weather.main.temp	.

It	would	be	nice	to	display	a	spinner	while	we’re	waiting	for	the	location	and	the	weather	API,	so	let’s	fill	in
	requestLocation()		and	add		gettingPosition		to	the	state:

class	CurrentTemperature	extends	Component	{

		state	=	{

				lat:	null,

				lon:	null,

				gettingPosition:	false

		}

		requestLocation	=	()	=>	{

				this.setState({	gettingPosition:	true	})

				window.navigator.geolocation.getCurrentPosition(

Chapter	6:	React

171

						({	coords:	{	latitude,	longitude	}	})	=>	{

								this.setState({	lat:	latitude,	lon:	longitude,	gettingPosition:	false	})

						}

)

		}

		render()	{

				const	dontHaveLocationYet	=	!this.state.lat

				return	(

						<div	className="Weather">

								<Query

										query={TEMPERATURE_QUERY}

										skip={dontHaveLocationYet}

										variables={{	lat:	this.state.lat,	lon:	this.state.lon	}}

								>

										{({	data,	loading	})	=>	{

												if	(loading	||	this.state.gettingPosition)	{

														return	<div	className="Spinner"	/>

												}

And	now	it	works,	and	we’re	reminded	that	the	API	returns	Kelvin,	so	let’s	show	it	in	Celsius	and	Fahrenheit	(and
default	to	the	former,	because	it’s	just	silly	that	the	latter	is	still	in	use):

const	kelvinToCelsius	=	kelvin	=>	Math.round(kelvin	-	273.15)

const	kelvinToFahrenheit	=	kelvin	=>

		Math.round((kelvin	-	273.15)	*	(9	/	5)	+	32)

class	CurrentTemperature	extends	Component	{

		state	=	{

				lat:	null,

				lon:	null,

				gettingPosition:	false,

				displayInCelsius:	true

		}

		requestLocation	=	()	=>	{	...	}

		toggleDisplayFormat	=	()	=>	{

				this.setState({

						displayInCelsius:	!this.state.displayInCelsius

				})

		}

		render()	{

				const	dontHaveLocationYet	=	!this.state.lat

				return	(

						<div	className="Weather">

								<Query

										query={TEMPERATURE_QUERY}

										skip={dontHaveLocationYet}

										variables={{	lat:	this.state.lat,	lon:	this.state.lon	}}

								>

Chapter	6:	React

172

										{({	data,	loading	})	=>	{

												...

												const	kelvin	=	data.weather.main.temp

												const	formattedTemp	=	this.state.displayInCelsius

														?	`${kelvinToCelsius(kelvin)}	°C`

														:	`${kelvinToFahrenheit(kelvin)}	°F`

												return	(

														<IconButton	onClick={this.toggleDisplayFormat}>

																{formattedTemp}

														</IconButton>

)

										}}

								</Query>

						</div>

)

		}

}

To	recap,	we	added		@rest		to	our	query,	which	made	our	REST	link	intercept	the	query	before	it	was	sent	to	our
GraphQL	server.	The	REST	link	returns	data	from	the	weather	REST	API,	which	gets	saved	to	our	store	and	provided
to	our	component.	We	get	all	the	nice	things	we’re	used	to	in	Apollo,	like	declarative	data	fetching	and	loading	state.
And	because	the	data	is	in	the	store,	we	can	reuse	the	data	in	other	components,	and	we	can	update	the	data
(through	requerying	or	direct	writes),	and	our	components	will	automatically	update.

Review	subscriptions
If	you’re	jumping	in	here,		git	checkout	21_0.2.0		(tag	21_0.2.0,	or	compare	21...22)

Section	contents:

Subscription	component
Add	new	reviews
Update	on	edit	and	delete

Early	on	in	this	chapter	we	set	up	our	first	subscription	for	an	updated	GitHub	star	count.	That	was	a	very	simple
example—each	event	we	received	from	the	server	contained	a	single	integer:

type	Subscription	{

		githubStars:	Int

}

In	this	section	we’ll	see	what	it’s	like	to	work	with	more	complex	subscriptions:

type	Subscription	{

Chapter	6:	React

173

https://github.com/GraphQLGuide/guide/tree/21_0.2.0
https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0

		reviewCreated:	Review

		reviewUpdated:	Review

		reviewDeleted:	ObjID

}

The	first	subscription	sends	a	response	event	when	someone	creates	a	new	review.		reviewUpdated		fires	whenever	a
review’s	text	or	stars	are	edited,	and		reviewDeleted		fires	when	one	is	deleted.	For	the	first	two,	the	events	contain	the
review	created/updated.	For	the	last,	it	contains	just	the	review’s	id.

Subscription	component

The	first	feature	we’ll	build	is	a	notification	when	the	user	is	on	the	reviews	page	and	a	new	review	is	created:

	src/components/Reviews.js	

import	ReviewCreatedNotification	from	'./ReviewCreatedNotification'

<main	className="Reviews	mui-fixed">

		...

		<ReviewList	user={user}	orderBy={this.state.orderBy}	/>

		<ReviewCreatedNotification	/>

		...

</main>

Now	that	we’ve	got	a		<ReviewCreatedNotification>		on	the	reviews	page,	what	do	we	put	in	it?	Apollo	has	a
	<Subscription>		component	that	provides	new	data	to	its	child	whenever	an	event	is	received	from	the	server:

	src/components/ReviewCreatedNotification.js	

import	React,	{	Component	}	from	'react'

import	{	Subscription	}	from	'react-apollo'

import	{	ON_REVIEW_CREATED_SUBSCRIPTION	}	from	'../graphql/Review'

class	ReviewCreatedNotification	extends	Component	{

		render()	{

				return	(

						<Subscription

								subscription={ON_REVIEW_CREATED_SUBSCRIPTION}

						>

								{({	data	})	=>	console.log(data)	||	null}

						</Subscription>

)

		}

}

export	default	ReviewCreatedNotification

We’ll	see	what	the	event	looks	like	in	a	moment,	but	first	we	need	the	subscription	itself:

	src/graphql/Review.js	

export	const	ON_REVIEW_CREATED_SUBSCRIPTION	=	gql`

		subscription	onReviewCreated	{

				reviewCreated	{

						...ReviewEntry

				}

		}

		${REVIEW_ENTRY}

`

And	now	we	can	see	what	happens	when	we	create	a	review:

Apollo	sends	the		createReview		mutation	to	the	server

Chapter	6:	React

174

https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0
https://www.apollographql.com/docs/react/api/react-apollo.html#subscription
https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0
https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0

The	server	sends	a	subscription	response	event	with	data
The		<Subscription>		component	gives	us	the	data,	and	we	log	it:

{

		"reviewCreated":	{

				"id":	"5c4b732bcd0a7103471de19b",

				"text":	"It's	good",

				"stars":	4,

				"createdAt":	1548448555245,

				"favorited":	false,

				"author":	{

						"id":	"5a3cd78368e9c40096ab5e3f",

						"name":	"Loren	Sands-Ramshaw",

						"photo":	"https://avatars2.githubusercontent.com/u/251288?v=4",

						"username":	"lorensr",

						"__typename":	"User"

				},

				"__typename":	"Review"

		}

}

The	data	is	in	the	same	format	we	would	expect	if	we	made	a	Query	named		reviewCreated	.	We	can	also	see	the
data	arriving	from	the	server.	First	let’s	see	what	it	looks	like	initially	by	opening	the	Network	tab	of	devtools,
refreshing	the	page,	scrolling	down	to	“subscriptions”	on	the	left,	and	selecting	the	“Frames”	tab:

We	see	that	the	first	message	the	client	always	sends	once	the	websocket	is	established	has		type:
"connection_init"	.	Then	it	sends	two	messages,	each	with	an	operation	and	sequential		id		numbers.	They	are
	type:	"start"		because	they	are	starting	subscriptions.	The	message	with		"id":	"1"		has	our	GitHub	stars
subscription	and	the	message	with		id:	"2"		has	our		onReviewCreated		subscription,	which	we	see	in		payload.query	.
There’s	also	a		payload.variables		field	that	we’re	not	using.	If	we	were	subscribing	to	a	review’s	comments,	we	might
use	a		commentCreated(review:	ObjID!):	Comment		subscription,	in	which	case	we	would	see:

{

		id:	"3",

		payload:	{

				operationName:	"onCommentCreated",

				query:	"subscription	onCommentCreated	{↵	commentCreated(review:	$review)	{↵	id↵	text↵}	}",
				variables:	{	review:	"5c4bb280cd0a7103471de19e"	}

		},

		type:	"start"

Chapter	6:	React

175

}

The	last	websocket	message	is	from	the	server	and	has		type:	"connection_ack"	,	which	means	that	the	server
acknowledges	that	it	has	received	the		connection_init		message.

Now	let’s	create	a	review	and	see	what	happens:

We	receive	another	message	from	the	server—this	one	with		type:	"data"	,	meaning	it	contains	data!	 	The	ID	is	2,
telling	us	that	it’s	an	event	from	the		onReviewCreated		subscription	(which	we	sent	to	the	server	earlier	with	the
matching		id:	"2").	And	this	time	the		payload		is	the	same		data		object	that	the		<Subscription>		component	gave
us	and	we	logged	to	the	console.

But	our	users	usually	won’t	see	messages	logged	to	the	console,	so	let’s	think	about	how	we	want	to	display	the	new
review	notification	to	the	user.	We	could		window.alert()	,	but	that	requires	dismissal	and	is	annoying	 .	We	could
put	it	on	the	page—for	example	in	the	header—but	then	the	notification	would	be	stuck	there	until	either	a	new
subscription	event	arrived	or	the	page	got	rerendered.	It	doesn’t	need	to	be	shown	for	long,	taking	up	the	user’s
brainspace	and	annoying	them	(at	least	Loren	is	annoyed	when	he	can’t	dismiss	a	notification).	So	let’s	show	a
temporary	message	somewhere	off	to	the	side.	We	can	search	the	Material	UI	component	library	and	find	the
component	meant	for	this	purpose—the	Snackbar.	We	control	whether	it’s	visible	with	an		open		prop,	so	we	need
state	for	that,	and	the		onClose		prop	gets	called	when	the	user	dismisses	the	Snackbar.

	src/components/ReviewCreatedNotification.js	

import	Snackbar	from	'@material-ui/core/Snackbar'

class	ReviewCreatedNotification	extends	Component	{

		state	=	{

				isOpen:	false

		}

		close	=	()	=>	{

				this.setState({	isOpen:	false	})

		}

Chapter	6:	React

176

https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/snackbars/
https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0

		open	=	()	=>	{

				this.setState({	isOpen:	true	})

				setTimeout(this.close,	5000)

		}

		render()	{

				return	(

						<Subscription

								subscription={ON_REVIEW_CREATED_SUBSCRIPTION}

								onSubscriptionData={this.open}

						>

								{({	data	})	=>

										data	&&	data.reviewCreated	?	(

												<Snackbar

														anchorOrigin={{	vertical:	'bottom',	horizontal:	'center'	}}

														open={this.state.isOpen}

														onClose={this.close}

														message={`New	review	from	${data.reviewCreated.author.name}:	${

																data.reviewCreated.text

														}`}

												/>

)	:	null

								}

						</Subscription>

)

		}

}

We	use		isOpen		for	the	state.	We	want	to	set		isOpen		to	true	whenever	we	receive	a	new	event,	so	we	use
	<Subscription>	’s		onSubscriptionData		prop.	And	we	want	to	automatically	dismiss	the	Snackbar	after	a	few	seconds,
so	we	use	a		setTimeout()	.	Now	when	we	create	a	review,	a	message	slides	up	from	the	bottom	of	the	window,	stays
for	few	seconds,	and	then	slides	back	down!

gif:	Review	created	notification

Add	new	reviews

Currently	when	we	create	a	review,	the	new	review	card	appears	at	the	top	of	the	list	on	our	page	because	of	our
optimistic	update.	But	other	users	just	see	the	notification—the	review	card	doesn’t	appear	in	the	list.	Let’s	figure	out
how	to	get	it	there.	One	option	is	to	turn	on	polling	in		ReviewList.js	:

Chapter	6:	React

177

http://res.cloudinary.com/graphql/guide/review-created.gif

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	({	orderBy	})	=>	({

				pollInterval:	1000,

				errorPolicy:	'all',

				variables:	{	limit:	10,	orderBy	},

				notifyOnNetworkStatusChange:	true

		}),

That’s	usually	the	easiest	and	best	way.	But	this	section	is	on	subscriptions	 .	If	at	some	point	polling	becomes	a
problem	from	a	resource-usage	perspective	(usually	it	won’t)	or	isn’t	fast	enough	(for	example	with	games	or	chat
apps),	we’ll	want	to	use	a	subscription.	We	already	have	a	subscription—the	one	created	by	our		<Subscription>	
component.	We	could	use	it	for	two	purposes.	The		onSubscriptionData		prop	is	called	with	an	argument	of	the	form:		{
client,	subscriptionData:	{	loading,	data,	error	}	}	,	so	we	could	get	the	new	review
(subscriptionData.data.reviewCreated)	and	write	it	to	the	store	using		client.writeQuery()	.	However,	there’s	another
way	to	use	a	subscription	that’s	better	suited	to	this	case:	the	same		subscribeToMore		prop	we	used	for		StarCount.js	.
The	query	we	want	to		subscribeToMore		for	is		REVIEWS_QUERY	,	our	list	of	reviews.	We	get	the	previous	query	result	and
the	subscription	data,	and	then	we	return	a	new	query	result:

	src/components/ReviewList.js	

import	{

		REVIEWS_QUERY,

		REVIEW_ENTRY,

		ON_REVIEW_CREATED_SUBSCRIPTION

}	from	'../graphql/Review'

class	ReviewList	extends	Component	{

		componentDidMount()	{

				window.addEventListener('scroll',	this.handleScroll)

				this.props.subscribeToReviewUpdates()

		}

		...

}

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	...,

		props:	({

				data:	{	reviews,	fetchMore,	networkStatus,	subscribeToMore	},

				ownProps:	{	orderBy	}

		})	=>	({

				reviews,

				networkStatus,

				loadMoreReviews:	...,

				subscribeToReviewUpdates:	()	=>	{

						subscribeToMore({

								document:	ON_REVIEW_CREATED_SUBSCRIPTION,

								updateQuery:	(prev,	{	subscriptionData	})	=>	{

										//	Assuming	infinite	reviews,	we	don't	need	to	add	new	reviews	to

										//	Oldest	list

										if	(orderBy	===	'createdAt_ASC')	{

												return	prev

										}

										const	newReview	=	subscriptionData.data.reviewCreated

										return	{

												reviews:	[newReview,	...prev.reviews]

										}

								}

						})

				}

		})

})

Now	when	we’re	viewing	the	most	recent	reviews	(createdAt_DESC)	and	receive	a	subscription	event,	we	add	the	new
review	to	the	front	of	the	list	of	reviews,	and	it	appears	first	on	the	page.	We	can	test	this	out	by	opening	a	second
browser	tab,	creating	a	new	review	in	that	tab,	and	seeing	it	immediately	appear	in	the	first	tab.

Chapter	6:	React

178

https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0

Update	on	edit	and	delete

It	would	also	be	nice	to	update	the	reviews	when	someone	else	edits	or	deletes	them.	If	we	look	at	the	Playground
schema,	we	can	see	that	the	server	has	more	subscription	options	related	to	reviews:		reviewUpdated:	Review		and
	reviewDeleted:	ObjID	.	So	let’s	use	’em!	Step	1	is	writing	the	subscription	documents	and	step	2	is	adding	more	calls
to		subscribeToMore	.	(subscribeToMore		doesn’t	mean	that	we’re	necessarily	subscribing	to	new	documents—just	that
we’re	subscribing	to	more	related	data,	and	in	this	case	the	data	is	either	the	review	that	was	updated	or	the	ID	of	the
review	that	was	deleted.)	First,	the	documents:

	src/graphql/Review.js	

export	const	ON_REVIEW_UPDATED_SUBSCRIPTION	=	gql`

		subscription	onReviewUpdated	{

				reviewUpdated	{

						...ReviewEntry

				}

		}

		${REVIEW_ENTRY}

`

export	const	ON_REVIEW_DELETED_SUBSCRIPTION	=	gql`

		subscription	onReviewDeleted	{

				reviewDeleted

		}

`

Because	the	return	type	of		reviewDeleted		is	a	scalar	(a	custom	one	called		ObjID),	we	don’t	write	a	selection	set.
	subscriptionData.data.reviewDeleted		will	be	an		ObjID		string,	not	an	object.	Next,		subscribeToMore	:

	src/components/ReviewList.js	

import	reject	from	'lodash/reject'

import	{

		REVIEWS_QUERY,

		REVIEW_ENTRY,

		ON_REVIEW_CREATED_SUBSCRIPTION,

		ON_REVIEW_UPDATED_SUBSCRIPTION,

		ON_REVIEW_DELETED_SUBSCRIPTION

}	from	'../graphql/Review'

...

const	withReviews	=	graphql(REVIEWS_QUERY,	{

		options:	...,

		props:	({

				data:	{	reviews,	fetchMore,	networkStatus,	subscribeToMore	},

				ownProps:	{	orderBy	}

		})	=>	({

				reviews,

				networkStatus,

				loadMoreReviews:	...,

				subscribeToReviewUpdates:	()	=>	{

						subscribeToMore({

								document:	ON_REVIEW_CREATED_SUBSCRIPTION,

								updateQuery:	...

						})

						subscribeToMore({

								document:	ON_REVIEW_UPDATED_SUBSCRIPTION,

								updateQuery:	(prev,	{	subscriptionData	})	=>	{

										const	updatedReview	=	subscriptionData.data.reviewUpdated

										return	{

												reviews:	prev.reviews.map(review	=>

														review.id	===	updatedReview.id	?	updatedReview	:	review

)

										}

								}

						})

Chapter	6:	React

179

https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0
https://github.com/GraphQLGuide/guide/compare/21_0.2.0...22_0.2.0

						subscribeToMore({

								document:	ON_REVIEW_DELETED_SUBSCRIPTION,

								updateQuery:	(prev,	{	subscriptionData	})	=>	{

										const	deletedId	=	subscriptionData.data.reviewDeleted

										return	{

												reviews:	reject(prev.reviews,	{	id:	deletedId	})

										}

								}

						})

				}

		})

})

For	review	updates,	we	replace	the	review	in	the	list	from	the	store	(prev)	with	the	updated	one	we	get	from	the
subscription.	For	deletions,	we	remove	it	from	the	list.

Prefetching
Background:	browser	performance

Section	contents:

On	mouseover
Cache	redirects

Prefetching	is	fetching	data	from	the	server	before	we	need	it	so	that	when	we	do	need	it,	we	already	have	it	on	the
client	and	can	use	it	right	away.	This	is	great	for	UX	because	the	user	doesn’t	have	to	look	at	a	loading	screen	waiting
for	data	to	load.	It’s	a	common	pattern—both	Gatsby	and	Next.js	prefetch	entire	webpages	with	their		<Link>	
components.

The	most	useful	thing	to	prefetch	in	our	app	is	the	section	content!	We	can	prefetch	just	by	making	a	query	with	the
Apollo	client:

client.query({

		query:	...

})

This	will	place	the	results	in	the	store,	so	that	when	we	render	a		<Section>		and	it	makes	a	query	for	section	data,	it
will	immediately	find	the	data	in	the	store.	We	could	prefetch	all	the	sections	using	the		sections		root	query:

import	{	withApollo	}	from	'react-apollo'

class	App	extends	Component	{

		componentDidMount()	{

				requestIdleCallback(()	=>	{

						this.props.client.query({

								query:	ALL_SECTIONS

						})

				})

		}

		render()	{	...	}

}

const	ALL_SECTIONS	=	gql`

		query	AllSections	{

				sections	{

						id

						content

						views

				}

		}

`

Chapter	6:	React

180

https://www.gatsbyjs.org/docs/gatsby-link/
https://nextjs.org/docs/#prefetching-pages

export	default	withApollo(App)

For	the	query	selection	set,	we	check	the	queries	in		Section.js		and	see	that	it	needs	the		content		and		views	.	We
use		withApollo		to	get	access	to	the		client	,	and	we	use		requestIdleCallback()		(which	calls	the	callback	when	the
browser	isn’t	busy)	so	that	we	don’t	delay	any	of	the	work	involved	with	the	initial	app	render.	When	the		AllSections	
query	response	arrives,	the	data	is	put	in	the	store,	and	any	future	render	of		<Section>		is	immediate,	without	need	to
talk	to	the	server.

On	mouseover

If	you’re	jumping	in	here,		git	checkout	22_0.2.0		(tag	22_0.2.0,	or	compare	22...23)

The	potential	issue	with	the	above	approach	is	how	much	data	we’re	prefetching—the	entire	content	of	the	book.	The
more	data	we	fetch,	the	more	work	the	server	has	to	do,	and	the	more	work	the	client	has	to	do—first	to	receive	and
store	it,	and	then	later	to	interact	with	the	larger	store.	The	client’s	workload	is	more	likely	to	become	an	issue
because	Apollo	runs	in	the	main	thread	(it	interacts	with	React,	which	interacts	with	the	DOM,	which	is	in	the	main
thread),	and	things	it	does	might	delay	user	interaction	or	freeze	animations	(see	Background	>	Browser	performance
for	more	info).	It	takes	longer	for	Apollo	to	query	and	update	the	store	when	there’s	more	data	in	the	store.

So	usually	instead	of	prefetching	all	of	the	data	we	could	possibly	need,	we	selectively	prefetch	some	of	it.	One
common	way	to	do	this	is	prefetching	when	the	user	mouses	over	something	clickable.	We	might	know	that	we’ll	need
certain	data	if	they	click	that	particular	link	or	button,	in	which	case	we	can	fetch	the	data	when	the	mouseover
happens	instead	of	waiting	for	the	click.	It’s	possible	that	they	won’t	click,	in	which	case	we’ll	have	extra	data	that	we
don’t	need,	but	this	usually	isn’t	a	problem.

For	the	Guide,	when	a	user	hovers	over	a	link	in	the	table	of	contents,	we	know	what	data	we’ll	need—that	section’s
contents.	We	can	export	the	query	for	section	contents	from		Section.js		and	use	it	in		TableOfContents.js		to	make
the	query.	In	order	to	make	the	query,	we	need	access	to	the	client	instance,	so	we	use		withApollo()	:

	src/components/TableOfContents.js	

import	{	graphql,	withApollo,	compose	}	from	'react-apollo'

import	{	ApolloClient	}	from	'apollo-client'

TableOfContents.propTypes	=	{

		...

		client:	PropTypes.instanceOf(ApolloClient).isRequired

}

export	default	compose(

		withData,

		withApollo

)(TableOfContents)

Now	we	can	make	the	query	inside	the		onMouseOver		function:

import	{	SECTION_BY_ID_QUERY	}	from	'./Section'

const	TableOfContents	=	({	chapters,	loading,	client	})	=>	(

		<nav	className="TableOfContents">

				...

				<NavLink

						to={{

								pathname:	slugify(chapter),

								state:	{	chapter,	section:	chapter.sections[0]	}

						}}

						className="TableOfContents-chapter-link"

						activeClassName="active"

						isActive={(match,	location)	=>	{

								const	rootPath	=	location.pathname.split('/')[1]

								return	rootPath.includes(withHyphens(chapter.title))

Chapter	6:	React

181

https://github.com/GraphQLGuide/guide/tree/22_0.2.0
https://github.com/GraphQLGuide/guide/compare/22_0.2.0...23_0.2.0
https://github.com/GraphQLGuide/guide/compare/22_0.2.0...23_0.2.0

						}}

						onMouseOver={()	=>	{

								client.query({

										query:	SECTION_BY_ID_QUERY,

										variables:	{

												id:	chapter.sections[0].id

										}

								})

						}}

				>

						...

								<NavLink

										to={{

												pathname:	slugify(chapter,	section),

												state:	{	chapter,	section	}

										}}

										className="TableOfContents-section-link"

										activeClassName="active"

										onMouseOver={()	=>	{

												client.query({

														query:	SECTION_BY_ID_QUERY,

														variables:	{

																id:	section.id

														}

												})

										}}

								>

		</nav>

)

We	have	two		onMouseOver	s:	When	mousing	over	a	chapter	link,	we	query	for	the	first	section	of	that	chapter.	When
mousing	over	a	section	link,	we	query	for	that	section.

We	also	need	to	add	the	export:

	src/components/Section.js	

export	const	SECTION_BY_ID_QUERY	=	gql`

		query	SectionContent($id:	String!)	{

				section(id:	$id)	{

						id

						content

						views

						scrollY	@client

				}

		}

`

And	now	it	works!	When	the	user	clicks	the	link,		<Section>		makes	a	new	query,	but	instantly	renders	the	section
content	because	it’s	already	in	the	store.	We	can	check	this	in	two	ways:

Opening	the	devtools	Network	tab	and	watching	when	the		SectionContent		query	is	sent	to	the	server.
Seeing	whether	the	loading	skeleton	appears	when	we	hover	over	a	new	link	for	a	second	before	clicking,	versus
immediately	clicking	it.	If	we	want	to	see	the	difference	more	clearly,	we	can	slow	down	the	connection	to	“Fast
3G”	in	the	devtools	Network	tab.

Depending	on	how	long	we	hover,	we	may	still	see	the	loading	skeleton:	for	example,	if	it	takes	three	seconds	to	load
when	we	immediately	click,	and	then	we	hover	on	the	next	link	for	two	seconds	before	clicking,	we	will	still	see	the
skeleton	for	one	second.

One	issue	to	consider	is	whether	we’re	making	a	lot	of	extra	queries,	because	users	may	mouse	over	sections	that
we’ve	already	loaded.	But	the	default	Apollo	client	network	policy	is		cache-first	,	which	means	that	if	Apollo	finds	the
query	results	in	the	cache,	it	won’t	send	the	query	to	the	server.	We’re	using	the	default,	so	we	don’t	need	to	do
anything,	but	if	we	had	set	a	different	default	in	the		ApolloClient		constructor	like	this:

	src/lib/apollo.js	

Chapter	6:	React

182

https://github.com/GraphQLGuide/guide/compare/22_0.2.0...23_0.2.0
https://www.apollographql.com/docs/react/api/react-apollo.html#graphql-config-options-fetchPolicy
https://www.apollographql.com/docs/react/api/apollo-client.html#apollo-client

export	const	apollo	=	new	ApolloClient({	

		link,	

		cache,

		defaultOptions:	{

				query:	{

						fetchPolicy:	'cache-and-network'

				}

		}

})

	cache-and-network		immediately	returns	any	results	available	in	the	cache	and	also	queries	the	server

then	we	could	set	a	different	network	policy	just	for	our	prefetching:

onMouseOver={()	=>	{

		client.query({

				query:	SECTION_BY_ID_QUERY,

				variables:	{

						id:	section.id

				},

				fetchPolicy:	'cache-first'

		})

}}

Cache	redirects

If	you’re	jumping	in	here,		git	checkout	23_0.2.0		(tag	23_0.2.0,	or	compare	23...24)

There	are	often	more	ways	than	just	mouseovers	to	intelligently	prefetch	certain	data.	What	the	ways	are	depends	on
the	type	of	app.	We	have	to	think	about	how	the	user	uses	the	app,	and	what	they	might	do	next.	In	our	app,	one
common	action	will	probably	be	to	read	the	next	section.	So	a	simple	thing	we	can	do	is	whenever	we	show	a	section,
we	prefetch	the	next	section.	Let’s	first	get	the		client		instance	into		<Section>	.	Before	we	used		withApollo()	,
which	we	could	do	again,	but	we	don’t	need	to—our		<Section>		is	inside	a		<Query>	,	which	always	provides	a	client
instance:

	src/components/Section.js	

import	{	ApolloClient	}	from	'apollo-client'

class	Section	extends	Component	{

		...

}

Section.propTypes	=	{

		...

		client:	PropTypes.instanceOf(ApolloClient).isRequired

}

const	SectionWithData	=	

		...

				<Query	query={query}	variables={variables}>

						{queryInfo	=>	(

								...

										<Section

												{...createProps(queryInfo)}

												client={queryInfo.client}

												...

										/>

)}

				</Query>

Now	inside		Section	,	we	want	to	make	the	query	on	initial	render	and	when	the	section	changes.	We’re	currently
repeating	things	inside		componentDidMount()		and		componentDidUpdate()	,	so	let’s	refactor	out	a	new	method
	onSectionChange()	:

Chapter	6:	React

183

https://github.com/GraphQLGuide/guide/tree/23_0.2.0
https://github.com/GraphQLGuide/guide/compare/23_0.2.0...24_0.2.0
https://github.com/GraphQLGuide/guide/compare/23_0.2.0...24_0.2.0

class	Section	extends	Component	{

		onSectionChange	=	newId	=>	{

				this.viewedSection(newId)

				this.updateScrollPosition()

		}

		...

		componentDidMount()	{

				window.addEventListener('scroll',	this.handleScroll)

				if	(this.props.section)	{

						this.onSectionChange(this.props.section.id)

				}

		}

		...

		componentDidUpdate(prevProps)	{

				if	(!this.props.section)	{

						return

				}

				const	{	id	}	=	this.props.section

				const	sectionChanged	=	get(prevProps,	'section.id')	!==	id

				if	(sectionChanged)	{

						this.onSectionChange(id)

				}

		}

		...

}

And	now	inside		onSectionChange()		we	can	do	the	prefetching:

class	Section	extends	Component	{

		onSectionChange	=	newId	=>	{

				this.viewedSection(newId)

				this.updateScrollPosition()

				this.prefetchNextSection(newId)

		}

		prefetchNextSection	=	currentId	=>	{

				this.props.client.query({

						query:	...

						variables:	{

								id:	...

						}

				})

		}

		...

}

But	what	query	do	we	make?	We	could	take	the	current	section	ID,	eg		1_3		(chapter	1,	section	3)	and	try	the	next
section	number,	eg		1-4	,	and	if	that	failed	(because	it	was	the	end	of	the	chapter),	we	could	go	to	the	next	chapter
with		2_1	.	That	would	look	something	like:

		prefetchNextSection	=	async	currentId	=>	{

				const	nextSectionId	=	...

				const	{	data	}	=	await	this.props.client.query({

						query:	SECTION_BY_ID_QUERY,

						variables:	{

								id:	nextSectionId

						}

				})

				if	(!data.section)	{

						const	nextChapterId	=	...

Chapter	6:	React

184

						this.props.client.query({

								query:	SECTION_BY_ID_QUERY,

								variables:	{

										id:	nextChapterId

								}

						})

				}

		}

	client.query()		returns	a	Promise,	which	we	can		await	,	and	our	API	resolves	the		section		query	to		null		when
there	is	no	such	section.	So	when		data.section		is	null,	we	query	for	the	next	chapter.	(Alternatively,	if	our	API
instead	returned	a	“No	such	section”	error,	we	could	use	a	try...catch	statement.)

However,	there’s	a	way	to	get	the	next	section	in	a	single	query—the		Section		type	has	a	field		next		of	type
	Section	!	Let’s	write	a	query	for	that:

		prefetchNextSection	=	currentId	=>	{

				this.props.client.query({

						query:	NEXT_SECTION_QUERY,

						variables:	{

								id:	currentId

						}

				})

		}

...

const	NEXT_SECTION_QUERY	=	gql`

		query	NextSection($id:	String!)	{

				section(id:	$id)	{

						id

						next	{

								id

								content

								views

								scrollY	@client

						}

				}

		}

`

For	the		next		selection	set,	we	copy	the	fields	from	the	other	queries	in		Section.js	,	since	those	are	the	fields	that
will	be	needed	if	the	user	navigates	to	the	next	section.	It	now	seems	like	we’re	done,	and	if	we	look	at	the	Network
tab,	we	see	that	the	prefetch	query	is	made.	We	can	also	see	in	Apollo	devtools	that	the	Section	object	with	the	next
section	ID	is	in	the	store.	However,	when	we	navigate	to	the	next	section,	the		SectionContent		query	is	being	made!

query	SectionContent($id:	String!)	{

		section(id:	$id)	{

				id

				content

				views

				scrollY	@client

		}

}

The	problem	is	that	Apollo	doesn’t	have	a	way	of	knowing	that	the	server	will	respond	to	a		section		query	that	has	an
	id		argument	with	the		Section		object	matching	that	ID.	We	can	inform	Apollo	of	this	using	a	cache	redirect,	which	is
a	configuration	function	we	provide	to		InMemoryCache		that	returns	the	cache	key	Apollo	should	look	for	before	it	sends
the	query	to	the	server.	If	it	finds	an	object	in	the	store	under	that	key,	it	will	just	return	that.

	src/lib/apollo.js	

const	cache	=	new	InMemoryCache({

		cacheRedirects:	{

Chapter	6:	React

185

https://www.apollographql.com/docs/react/api/apollo-client.html#ApolloClient.query
https://www.apollographql.com/docs/react/advanced/caching.html#cacheRedirect
https://github.com/GraphQLGuide/guide/compare/23_0.2.0...24_0.2.0

				Query:	{

						section:	(_,	{	id	},	{	getCacheKey	})	=>

								getCacheKey({	__typename:	'Section',	id	})

				}

		}

})

	getCacheKey()		formats	the	object	into	the	cache	key—we’re	using	the	default	cache	key	format,		__typename:id	,	for
example		Section:1-4	,	which	is	what	we	see	in	the	Cache	tab	of	Apollo	devtools.

Now	our	prefetching	works.	If	we	turn	on	Slow	3G	in	the	Network	tab	and	click	on	the	next	section,	it	will	render
immediately,	because	it	was	prefetched	when	the	previous	section	rendered	 .

Batching
If	you’re	jumping	in	here,		git	checkout	24_0.2.0		(tag	24_0.2.0).	We	won’t	be	leaving	the	code	from	this	section
in	our	app,	so	the	next	section	will	also	start	at	tag		24	.

If	we	load	the	site	with	the	Network	tab	of	devtools	open,	we	see	a	lot	of	requests	that	say	“graphql”	on	the	left—that’s
the	path,	so	the	full	endpoint	is		api.graphql.guide/graphql	,	our	GraphQL	API.	By	default,	each	of	the	GraphQL
queries	in	our	app	is	sent	in	its	own	HTTP	request.	We	can	look	at	the	request	payload	to	see	which	query	it	is,	for
example	our	simple		StarsQuery	:

We	can	batch	our	initial	queries	into	one	request,	which	will	look	like	this:

Chapter	6:	React

186

https://github.com/GraphQLGuide/guide/tree/24_0.2.0

We	also	see	that	the	third	request	is	to		/graphql	,	but	the	Request	Method	is		OPTIONS		instead	of	the	normal
	POST	,	and	the	status	code	is		204		instead	of	the	normal		200	.	This	is	called	a	preflight	request	that	Chrome
makes	to	the	server	to	check	its	security	policy	(CORS),	since	it’s	going	to	a	different	domain	from	the	client
(localhost:3000).

At	first	glance,	it	seems	better	to	batch—fewer	requests	is	more	efficient	for	our	browser,	and	it	reduces	the	HTTP
request	load	on	our	server.	However,	the	big	drawback	is	that	we	only	get	one	response.	This	means	that	the	server
keeps	all	of	our	results	until	the	last	query	in	the	batch	completes,	and	then	sends	all	the	results	back	to	us	together	in
one	response.	Without	batching,	we	get	results	to	our	faster	queries	faster,	and	those	parts	of	the	page	get	rendered,
while	the	other	parts	stay	in	loading	state	for	longer.	For	this	reason,	it’s	recommended	that	we	keep	the	default
unbatched	requests,	and	only	try	batching	when	we	have	server	load	issues	and	have	already	made	other
performance	improvements.	If	we	ever	get	to	that	point,	here’s	the	simple	setup:

npm	install	apollo-link-batch-http

	src/lib/apollo.js	

import	{	BatchHttpLink	}	from	'apollo-link-batch-http'

const	httpLink	=	new	BatchHttpLink({	uri:	'https://api.graphql.guide/graphql'	})

We	replace	our	previous		httpLink		with	the	link	from		apollo-link-batch-http	.	One	thing	you	may	notice	in	the
Network	tab	is	that	soon	after	our	initial	batched	request,	we	see	another—this	one	only	contains	a	single	operation,
named		ViewedSection	:

Chapter	6:	React

187

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://blog.apollographql.com/batching-client-graphql-queries-a685f5bcd41b
https://www.apollographql.com/docs/link/links/batch-http.html

The	reason	this	wasn’t	included	in	the	initial	batch	request	is	because	it	happens	a	second	later:	only	queries	that	are
made	within	a	certain	window	are	batched	together.	The	default		batchInterval		is	10	milliseconds,	and	can	be
changed	as	an	option	to		BatchHttpLink()	.

If	we	know	there	are	certain	queries	that	will	take	longer	than	others,	and	we	want	them	to	bypass	batching,	we	can
set	up	both	a	normal	http	link	and	a	batched	link.	Then	we	can	use		split()		to	decide	which	link	to	send	a	request	to:

const	client	=	new	ApolloClient({

		link:	split(

				operation	=>	operation.getContext().slow	===	true,

				httpLink,	

				batchHttpLink

)

});

<Query	query={SLOW_QUERY}	context={{	slow:	true	}}>

<Query	query={NORMAL_QUERY}>

We	add	data	to	the	context,	and	then	we	check	it	inside		split()	:	if	the	context	has		slow:	true	,	then	send	via	the
	httpLink	.	Otherwise,	send	via	the		batchHttpLink	.

Persisting
If	you’re	jumping	in	here,		git	checkout	24_0.2.0		(tag	24_0.2.0,	or	compare	24...25)

The	Apollo	store	is	stored	in	page-specific	memory.	When	the	webpage	is	closed	or	reloaded,	the	memory	is	cleared,
which	means	the	next	time	our	app	loads,	the	store	is	empty—it	has	to	fetch	all	the	data	it	needs	from	the	server
again.	Persisting	is	saving	the	data	in	the	Apollo	store	so	that	on	future	pageloads,	we	can	restore	the	data	to	the
store,	and	we	don’t	have	to	fetch	it.	The	main	benefit	is	we	can	show	the	data	to	the	user	much	faster	than	we	could	if
we	had	to	fetch	it	from	the	server.	We	can	easily	set	this	up	with	the		apollo-cache-persist		package:

	src/components/App.js	

import	{	persistCache	}	from	'apollo-cache-persist'

import	{	cache	}	from	'../lib/apollo'

Chapter	6:	React

188

https://www.apollographql.com/docs/link/links/batch-http.html#options
https://github.com/GraphQLGuide/guide/tree/24_0.2.0
https://github.com/GraphQLGuide/guide/compare/24_0.2.0...25_0.2.0
https://github.com/apollographql/apollo-cache-persist
https://github.com/GraphQLGuide/guide/compare/24_0.2.0...25_0.2.0

persistCache({

		cache,

		storage:	window.localStorage,

		maxSize:	4500000,	//	little	less	than	5	MB

		debug:	true

})

And	we	need	to	export		cache	:

	src/lib/apollo.js	

export	const	cache	=	new	InMemoryCache({	...	})

The		persistCache()		function	sets	up	persistence.		debug:	true		has	it	log	the	size	of	the	cache	whenever	it’s	saved.
The		storage		parameter	has	a	number	of	options:

	window.localStorage	

	window.sessionStorage	

localForage:	uses	WebSQL	or	IndexedDB	when	available	(most	browsers),	and	falls	back	to		localStorage	
	AsyncStorage		in	React	Native

	sessionStorage		is	rarely	used,	since	it	is	cleared	when	the	browser	is	closed,	and	we	usually	want	to	store	data	for	a
longer	period.		localStorage		is	simple	to	use	and	can	consistently	store	5–10	MB.	localForage	is	good	for	complex
querying	and	larger	sets	of	data.	However,	it	is	generally	slower	than		localStorage		for	simple	operations	(and	our
operation	is	simple:	it’s	just	saving	and	getting	a	single	piece	of	data—the	contents	of	the	Apollo	store).	We	also	have
to	import	it	from	npm,	which	adds	an	additional	8	KB	gzipped	to	our	JavaScript	bundle.

So	we	probably	would	only	want	to	use	localForage	if	we	needed	more	than	5	MB	of	space.	Let’s	think	about	what
kind	of	data	our	app	queries	for,	how	much	space	it	takes	up,	and	how	much	we	might	want	of	it.	The	largest	thing	the
Guide	queries	for	is	section	text,	and	according	our	new	logging,	each	section	(currently	just	a	paragraph	of	Lorem
ipsum)	takes	up	2	KB:

[apollo-cache-persist]	Persisted	cache	of	size	34902

[apollo-cache-persist]	Persisted	cache	of	size	37014

The	second	line	was	printed	after	hovering	over	a	section	link	in	the	table	of	contents.

At	this	rate,	we	would	fill	up	the	cache	after	loading	5000	KB	/	2	KB	=	2500	sections,	so	5	MB	is	currently	plenty	of
room	for	us.	Let’s	go	with		localStorage	.

	maxSize		is	the	maximum	number	of	bytes	to	persist.	When		maxSize		is	reached,	it	will	stop	saving	data	changes	in
the	current	session,	and	the	next	time	the	app	starts,	the	cache	will	be	cleared.	We	could	set	a	different		maxSize	
depending	on	which	browser	we’re	in,	but	for	simplicity	let’s	just	assume	we’re	in	the	lowest-quota	browser,	Safari,
which	can	store	5	MB.	We	set		maxSize		to	4.5	MB	to	leave	a	little	room	for	other	uses	(for	instance	our	Auth0	library
uses		localStorage	,	and	maybe	we’ll	decide	later	that	we	want	to	use	it	for	something	else).

Alright—we’ve	covered	all	of	the	arguments	we	used	with		persistCache()		(there	are	others	we’re	not	using).	But
we’re	not	done:	the	cache	is	getting	persisted	fine,	but	when	a	saved	cache	is	restored	on	subsequent	pageloads,	our
components	are	still	querying,	and	they	don’t	get	data	until	the	query	response	comes	back	from	the	server.

We	can	verify	this	by	changing	the	speed	to	“Slow	3G”	in	Network	devtools	and	see	A)	the	graphql	requests
being	sent	and	B)	both	the	first	load	and	subsequent	loads	take	a	few	seconds	for	the	loading	skeleton	to	be
replaced	with	text.

The	reason	for	this	is	that		persistCache()		takes	time	to	complete	(at	least	150	ms	on	Loren’s	computer),	and	by	that
time,		react-apollo		has	already	sent	off	our	components’	queries.	And	when	it	does	complete,	our	components	don’t
know	that	there’s	new	data	in	the	cache.	So	when	there’s	a	saved	cache	to	restore,	we	want	to	wait	for

Chapter	6:	React

189

https://github.com/GraphQLGuide/guide/compare/24_0.2.0...25_0.2.0
https://github.com/localForage/localForage
https://bundlephobia.com/result?p=localforage@1.7.3
https://www.html5rocks.com/en/tutorials/offline/quota-research/
https://github.com/apollographql/apollo-cache-persist#additional-options

	persistCache()		to	complete	before	rendering	our	components	and	triggering	their	queries.	Then	all	of	our		cache-
first		queries	will	see	that	the	data	is	in	the	cache	and	use	it	instead	of	requesting	it	from	the	server.	We	can	tell	if
there’s	a	saved	cache	by	checking	in		localStorage		for	the	key	that		persistCache()		uses,		apollo-cache-persist	:

	src/components/App.js	

const	cacheHasBeenSaved	=	!!localStorage.getItem('apollo-cache-persist')

class	App	extends	Component	{

		state	=	{

				loading:	cacheHasBeenSaved

		}

		async	componentDidMount()	{

				await	persistCache({

						cache,

						storage:	window.localStorage,

						maxSize:	4500000,	//	little	less	than	5	MB

						debug:	true

				})

				this.setState({

						loading:	false

				})

		}

		render()	{

				if	(this.state.loading)	{

						return	null

				}

				return	(

						<div	className="App">

								...

						</div>

)

		}

}

export	default	App

Now	let’s	test	it	out.	When	we	load	the	app	for	the	first	time,	we	see	something	like	this:

[apollo-cache-persist]	No	stored	cache	to	restore

[apollo-cache-persist]	Persisted	cache	of	size	17005

[apollo-cache-persist]	Persisted	cache	of	size	17129

The	first	message	prints	out	on	load,	and	the	second	appears	a	second	after	the	page	content	appears,	saying	that
the	Apollo	cache	was	saved	to		localStorage		and	what	its	size	was.	The	third	appears	shortly	after	that,	meaning	the
cache	was	re-saved,	and	the	size	only	goes	up	by	about	a	hundred	bytes.	What	caused	the	re-save?	We	must	have
made	another	request	to	the	server	after	the	initial	set	of	requests.	We	can	check	the	Network	tab	to	see	what	the	last
GraphQL	request	was,	and	we	see	that	it’s	the		ViewedSection		mutation.	But	why	would	that	mutation	change	the
Apollo	cache?	It’s	not	a	query	fetching	data.	Let’s	look	at	the	cache	to	see.	In	the	Cache	tab	of	Apollo	devtools,	there’s
a		ROOT_MUTATION	:

Chapter	6:	React

190

https://github.com/GraphQLGuide/guide/compare/24_0.2.0...25_0.2.0

We	see	that	our	mutation	is	indeed	in	the	cache,	and	it	resolved	to	a		Section		object.	Is	the	entire	cache,	including
mutation	results,	persisted?	We	can	look	at	what’s	saved	by	entering	this	in	the	browser	console:

JSON.parse(localStorage.getItem('apollo-cache-persist'))

And	we	see	that	it	is	present,	and	the		viewedSection		mutation	has		type:	"id"	,	meaning	that	it	has	been	normalized,
linking	to	the	top-level	object	with		id:	"Section:5-1"	.

Now	let’s	see	what	happens	when	we	reload	the	app.

[apollo-cache-persist]	Restored	cache	of	size	17129

[apollo-cache-persist]	Persisted	cache	of	size	17129

The	cache	is	restored!	We	can	check	to	make	sure	the	cache	is	being	used	to	immediately	provide	data	to	our
components	by:	1)	seeing	in	Network	devtools	that	our	initial	batch	of	GraphQL	requests	are	not	being	made,	and	2)
slowing	the	network	speed	to	“Slow	3G”	and	seeing	that	there	is	no	loading	skeleton.	Versus	if	we	delete	the	cache
and	reload,	we	see	the	skeleton	for	a	few	seconds:

Application	devtools
Select		Local	Storage		on	the	left
Select		http://localhost:3000	
Select		apollo-cache-persist		on	the	right
Click	the		X		delete	button
Reload

Chapter	6:	React

191

So	the	persisting	is	working	correctly,	but	if	we	test	the	app	further,	we	find	that	we	can’t	log	out!	Well,	technically,	we
can,	but	it	doesn’t	look	like	we	are—after	clicking	“Sign	out”	on	the	profile	page,	the	site	reloads	and	we	still	see	our
GitHub	profile	photo	on	the	top-right,	and	we	can	still	click	it	to	see	our	profile.	Why	is	that?

On	load,	the	app	reads	all	the	queries	from	the	cache,	including	the		currentUser		query,	which	was	saved	to	the
cache	when	we	logged	in.	It’s	still	there,	along	with	all	the	private	data	we	had	access	to,	like	bonus	chapters.	To	fix
this,	we	can	clear	the	cache	when	we	log	out.	In	order	to	clear	the	cache,	we	need	to	use	a	different	API	from		apollo-
cache-persist	.	We’ve	been	using	the	basic	API,		persistCache()	.	The	more	advanced	API	is		CachePersistor	:

const	persistor	=	new	CachePersistor(options)

And	then	we	call	methods	on	the		persistor		object	when	we	want	things	to	happen:	for	instance,
	persistor.restore()		when	we	want	to	restore	the	cache	(which		persistCache()		did	automatically,	but	now	we	need
to	do	ourselves).	So	let’s	update		App.js	:

	src/components/App.js	

import	{	CachePersistor	}	from	'apollo-cache-persist'

import	{	cache,	apollo	}	from	'../lib/apollo'

const	persistor	=	new	CachePersistor({

		cache,

		storage:	window.localStorage,

		maxSize:	4500000,	//	little	less	than	5	MB

		debug:	true

})

apollo.onResetStore(()	=>	persistor.purge())

const	cacheHasBeenSaved	=	!!localStorage.getItem('apollo-cache-persist')

class	App	extends	Component	{

		state	=	{

				loading:	cacheHasBeenSaved

		}

		async	componentDidMount()	{

				await	persistor.restore()

				this.setState({

						loading:	false

				})

		}

		...

}

This	line	clears	the	cache	when	the	store	is	reset:

apollo.onResetStore(()	=>	persistor.purge())

And	since	we	call		apollo.resetStore()		on	logout	in		src/lib/auth.js	,	clicking	“Sign	out”	clears	the	cache,	and	we
see	“Sign	in”	instead	of	our	photo!	

But	there’s	another	bug!	 	When	we’re	signed	out,	we	get	truncated	section	content	back	from	the	API.	This	gets
saved	in	the	cache,	and	when	we	sign	in,	the	current	section	gets	refetched	(due	to
	apollo.reFetchObservableQueries()		being	called	in		auth.js		on	login).	But	if	we	looked	at	more	than	the	current
section	before	signing	in,	the	other	sections	don’t	get	refetched,	because	there	are	no	current	(“observable”)	queries
for	them.	So	they	get	stuck	with	the	truncated	content—when	we	revisit	them,	the	truncated	content	is	loaded	from	the
cache.	We	can	make	sure	they’re	updated	either	by:

Chapter	6:	React

192

https://github.com/apollographql/apollo-cache-persist#advanced-usage
https://github.com/GraphQLGuide/guide/compare/24_0.2.0...25_0.2.0

changing	the	section	content	queries’	fetch	policy	to		cache-and-network	,	or
replacing		apollo.reFetchObservableQueries()		with		apollo.resetStore()	

The	second	would	be	simpler,	but	let’s	do	the	first,	because	it	also	fixes	another	issue:	when	data	is	cached,	it’s	saved
until	it	reaches		maxSize	,	which	could	take	a	long	time.	The	book	content	will	periodically	be	updated,	and	we	want
our	users	to	see	the	updated	content.	With		cache-and-network	,	the	latest	version	will	always	be	fetched	from	the
server.	We	make	the	change	by	adding	the		fetchPolicy		prop	to	our		<Query>		component:

	src/components/Section.js	

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		...

		return	(

				<Query	query={query}	variables={variables}	fetchPolicy="cache-and-network">

And	we	can	test	with	these	steps:

Sign	out
Click	“Preface”	and	then	“Introduction”
Sign	in
Click	“Preface”

The	preface	content	is	no	longer	truncated,	but	we	see	a	loading	skeleton	before	the	full	content	appears.	So
	loading		must	be	initially	true,	even	though	we	have	the	truncated	preface	content	in	the	cache.	This	is	because
	loading		is	true	whenever	there	is	a	network	request	in	progress	(which	there	is,	because	we’re	using		cache-and-
network).	And	we	see	the	skeleton	when	loading	any	section—even	those	with	full	content	in	the	cache.	It’s	as	if	we
don’t	even	have	a	store	anymore.	To	stop	showing	the	skeleton,	we	have	to	go	by	whether	there’s	data	instead	of
using	Apollo’s		loading		variable.	So	let’s	set		loading:	X		in	each		createProps		function:

const	SectionWithData	=	({	location:	{	state,	pathname	}	})	=>	{

		const	page	=	deslugify(pathname)

		let	query,	variables,	createProps

		if	(state)	{

				query	=	SECTION_BY_ID_QUERY

				variables	=	{	id:	state.section.id	}

				createProps	=	({	data	})	=>	({

						section:	{

								...state.section,

								content:	get(data,	'section.content'),

								views:	get(data,	'section.views'),

								scrollY:	get(data,	'section.scrollY')

						},

						chapter:	state.chapter,

						loading:	!data.section

				})

		}	else	if	(page.chapterTitle)	{

				query	=	SECTION_BY_CHAPTER_TITLE_QUERY

				variables	=	{	title:	page.chapterTitle	}

				createProps	=	({	data	})	=>	({

						section:	get(data,	'chapterByTitle.section'),

						chapter:	{

								...data.chapterByTitle,

								number:	null

						},

						loading:	!data.chapterByTitle

				})

		}	else	if	(page.chapterNumber)	{

				query	=	SECTION_BY_NUMBER_QUERY

				variables	=	page

				createProps	=	({	data	})	=>	({

						section:	get(data,	'chapterByNumber.section'),

						chapter:	data.chapterByNumber,

						loading:	!data.chapterByNumber

Chapter	6:	React

193

https://www.apollographql.com/docs/react/api/react-apollo#graphql-config-options-fetchPolicy
https://github.com/GraphQLGuide/guide/compare/24_0.2.0...25_0.2.0

				})

		}

		return	(

				<Query	query={query}	variables={variables}	fetchPolicy="cache-and-network">

						{queryInfo	=>	(

								<Mutation	mutation={VIEWED_SECTION_MUTATION}>

										{viewedSection	=>	(

												<Mutation	mutation={SET_SECTION_SCROLL_MUTATION}>

														{setScrollPosition	=>	(

																<Section

																		{...createProps(queryInfo)}

																		client={queryInfo.client}

																		viewedSection={viewedSection}

																		setScrollPosition={setScrollPosition}

																/>

)}

												</Mutation>

)}

								</Mutation>

)}

				</Query>

)

}

And	now	it	works!	When	we	revisit	the	preface,	it	shows	the	truncated	content	in	the	cache	first,	and	then	shows	the
full	content	fetched	from	the	server.

While	the	problem	we	were	trying	to	fix	is	fixed,	the	astute	will	notice	a	new	bug,	which	is	pending	a	fix	in
	react-apollo	.

Multiple	endpoints
If	you’re	jumping	in	here,		git	checkout	25_0.2.0		(tag	25_0.2.0,	or	compare	25...26)

So	far	we’ve	been	working	with	a	single	GraphQL	endpoint,		api.graphql.guide/graphql		(and	its	websocket
counterpart,		/subscriptions).	Would	we	ever	want	our	app	to	talk	to	another	endpoint?	Maybe.	Similarly	to	the	APIs
in	the	REST	section,	we	usually	would	want	to	proxy	the	other	GraphQL	endpoint	through	our	GraphQL	server	(we’ll
go	over	how	to	do	this	in	the	server	chapter).	There	are	two	main	reasons:

If	the	endpoint	is	authenticated,	we	usually	will	want	to	keep	it	private	on	our	server.
It’s	nice	for	our	GraphQL	endpoint	to	have	the	complete	graph	of	data	our	app	might	need,	so	that	devs	have	one
source	of	truth,	and	so	that	our	server-side	tools—including	caching,	logging,	and	analytics—cover	all	of	our
queries.

However,	there	are	cases	in	which	we	might	not	want	to	proxy:	we	might	not	have	control	over	the	backend,	or	maybe
we	want	to	reduce	load	on	our	server	or	get	a	slightly	better	latency	than	we	would	while	proxying.	So	we	need	a
GraphQL	API	from	which	to	fetch	some	data	for	this	section.	Apollo	GraphQL	shares	the	name	of	NASA’s	Apollo
project,	which	landed	the	first	humans	on	the	moon	in	1969.	And	Apollo	GraphQL	identifies	with	the	rocket	emoji	࢜ .
So	let’s	put	that	emoji	somewhere	and	make	it	an	easter	egg—if	it’s	clicked,	we’ll	show	the	next	SpaceX	launch	using
the	unofficial	SpaceX	GraphQL	API.

So	far,	all	of	our	queries	know	what	endpoint	to	talk	to	because	of	the		<ApolloProvider>		wrapped	around	the		<App>	:

	src/index.js	

ReactDOM.render(

		<BrowserRouter>

				<ApolloProvider	client={apollo}>

						<MuiThemeProvider	theme={theme}>

								<App	/>

						</MuiThemeProvider>

				</ApolloProvider>

Chapter	6:	React

194

https://github.com/GraphQLGuide/guide/issues/49
https://github.com/GraphQLGuide/guide/tree/25_0.2.0
https://github.com/GraphQLGuide/guide/compare/25_0.2.0...26_0.2.0
https://github.com/spacexland/api

		</BrowserRouter>,

		document.getElementById('root')

)

where		apollo		is	the		ApolloClient		instance	we	created	with	an	HTTP	link	to		api.graphql.guide/graphql	:

	src/lib/apollo.js	

const	httpLink	=	createHttpLink({

		uri:	'https://api.graphql.guide/graphql'

})

...

export	const	apollo	=	new	ApolloClient({	link,	cache	})

We’re	going	to	need	a	second		ApolloClient		instance	to	use	for	our	launch	query:

	src/lib/apollo.js	

export	const	apolloSpace	=	new	ApolloClient({

		link:	ApolloLink.from([

				errorLink,

				createHttpLink({

						uri:	'https://api.spacex.land/graphql'

				})

]),

		cache:	new	InMemoryCache()

})

Now	to	use	it,	we	can	put	it	in	the		client		prop	of		<Query>	,	which	overrides	its	normal	behavior	of	using	the	client
provided	by		<ApolloProvider>	.

<Query

		query={LAUNCH_QUERY}

		client={apolloSpace}

>

For	building	the		LAUNCH_QUERY	,	let’s	see	what	data	is	available	from	the	API	by	browsing	its	GraphiQL:
api.spacex.land/graphql/.	From	the	available	queries,	it	looks	like	the	relevant	one	for	us	is		launchNext	,	and	we	can
pick	a	few	fields	to	display:

Chapter	6:	React

195

https://github.com/GraphQLGuide/guide/compare/25_0.2.0...26_0.2.0
https://api.spacex.land/graphql/

	src/components/Profile.js	

import	gql	from	'graphql-tag'

const	LAUNCH_QUERY	=	gql`

		query	LaunchQuery	{

				launchNext	{

						details

						launch_date_utc

						launch_site	{

								site_name

						}

						mission_name

						rocket	{

								rocket_name

						}

				}

		}

`

Now	we	can	use	the		<Query>	—let’s	put	the	࢜ 	button	on	the	bottom	of		Profile	.	We	need	to	convert	it	to	a	class	so
that	we	can	have	state	to	toggle	whether	the	launch	info	is	displayed.	Then	we	put	the	data	from	the	response	into	a
	<dl>	:

	src/components/Profile.js	

import	React,	{	Component	}	from	'react'

import	{	Query	}	from	'react-apollo'

import	{	apolloSpace	}	from	'../lib/apollo'

class	Profile	extends	Component	{

		state	=	{

Chapter	6:	React

196

https://github.com/GraphQLGuide/guide/compare/25_0.2.0...26_0.2.0
https://github.com/GraphQLGuide/guide/compare/25_0.2.0...26_0.2.0

				showLaunch:	false

		}

		toggleLaunchVisibility	=	()	=>	{

				this.setState({	showLaunch:	!this.state.showLaunch	})

		}

		render()	{

				const	{	user,	loggingIn	}	=	this.props

				...

				<main	className="Profile">

						...

						<div	className="Profile-footer">

								<button

										className="Profile-toggle-launch"

										onClick={this.toggleLaunchVisibility}

								>

										

࢜												

										

								</button>

								{this.state.showLaunch	&&	(

										<Query

												query={LAUNCH_QUERY}

												fetchPolicy="cache-and-network"

												client={apolloSpace}

												onCompleted={()	=>

														window.scrollTo({	top:	1000,	left:	0,	behavior:	'smooth'	})

												}

										>

												{({

														data:	{

																launchNext:	{

																		details,

																		launch_date_utc,

																		launch_site,

																		mission_name,

																		rocket

																}	=	{}

														},

														loading

												})	=>

														loading	?	(

																<div	className="Spinner"	/>

)	:	(

																<div>

																		The	next	SpaceX	launch	will	be:

																		<dl>

																				<dt>Date</dt>

																				<dd>

																						<code>{new	Date(launch_date_utc).toString()}</code>

																				</dd>

																				<dt>Mission</dt>

																				<dd>

																						<code>{mission_name}</code>

																				</dd>

																				<dt>Rocket</dt>

																				<dd>

																						<code>{rocket.rocket_name}</code>

																				</dd>

																				<dt>Launch	site</dt>

																				<dd>

																						<code>{launch_site.site_name}</code>

																				</dd>

																				<dt>Details</dt>

Chapter	6:	React

197

																				<dd	className="-non-code">{details}</dd>

																		</dl>

																</div>

)

												}

										</Query>

)}

						</div>

				</main>

		}

}

When	the	࢜ 	button	is	clicked,	the	launch	info	appears	below,	but	since	(depending	on	our	screen	height	and	browser
settings)	we	might	be	at	the	bottom	of	the	page	already,	we	might	not	be	able	to	see	the	info	unless	we	scroll.	It	would
be	nice	UX	to	autoscroll	down	to	show	the	info.		<Query>		has	an		onCompleted		prop	that	is	called	after	the	query
results	are	provided	to	us	and	our	component	has	re-rendered,	so	we	can	call		window.scrollTo		then.

In	order	to	deconstruct		launchNext		we	need	to	add		=	{}	,	as	it	will	be	undefined	initially.

We’re	using		fetchPolicy="cache-and-network"		instead	of	the	default		cache-first		to	make	sure	we	always	have	the
latest	results.	If	a	user	checked	the	next	launch,	left	the	browser	open	for	a	while,	and	checked	back	later,	it’s	possible
that	the	launch	we	have	in	the	cache	will	be	old—either	the	launch	already	happened,	or	the	plans	changed.	With
	cache-and-network	,		<Query>		will	first	provide	us	with	the	cache	data,	then	send	the	request	to	the	server,	then
provide	us	with	the	response	data.	However,	something	unexpected	is	now	happening	when	we	repeatedly	toggle	the
launch	info.	Do	you	notice	it?

Every	time	we	show	the	launch	info,	it	shows	the	loading	spinner.	Which	we	wouldn’t	expect,	because	after	the	first
time,	it	should	be	immediately	giving	us	data	from	the	cache.	If	we	log		data		and		loading		to	see	what’s	going	on,
we’ll	find	that		data		is	always	filled,	and		loading		is	first		true		and	then		false	.	That’s	right—at	first,		data		is	filled
at	the	same	time	that		loading		is		true	.	This	is	the	first	time	that’s	happened	in	our	app—always	before,		data		has
been	an	empty	object	while		loading		was		true	.	This	actually	isn’t	a	bug—it’s	how		loading		is	meant	to	work.	It’s
true	whenever	a	request	is	currently	in	flight.

If	we	just	want	to	display	data	whenever	it’s	available,	we	can	test	whether	there’s	data	instead	of	using		loading	:

{({

		data:	{

				launchNext:	{

						details,

						launch_date_utc,

						launch_site,

						mission_name,

						rocket

				}	=	{}

		}

})	=>

		details	?	(

				<div>

						The	next	SpaceX	launch	will	be:

						...

				</div>

)	:	(

				<div	className="Spinner"	/>

)

}

Now	we’ll	only	see	the	spinner	the	first	time.

We’re	done!	We	can	add	more	SpaceX	data	to	different	parts	of	our	app	by	importing		apolloSpace		and	using	it	in
Apollo’s		client		prop.	And	we	can	add	more	APIs	by	creating	more		ApolloClient		instances.

Chapter	6:	React

198

https://www.apollographql.com/docs/react/api/react-apollo.html#query-props
https://www.apollographql.com/docs/react/api/react-apollo.html#graphql-query-data-loading

Extended	topics
Section	contents:

Linting
Setting	up	linting
Fixing	linting	errors
Using	linting

Uploading	files
Testing

Linting
If	you’re	jumping	in	here,		git	checkout	26_0.2.0		(tag	26_0.2.0,	or	compare	26...27)

Linters	analyze	code	for	errors	without	running	the	code—they	just	look	at	the	code.	ESLint	is	the	main	linter	for
JavaScript.	It’s	already	being	used	in	our	app	by	Create	React	App.	However,	their	ESLint	settings	just	cover
JavaScript—they	don’t	check	our	GraphQL	queries	to	see	if	they’re	valid.	Let’s	set	that	up!

First	let’s	run	ESLint	as	it’s	currently	set	up.	We	have	a	script	in	our		package.json		that	just	runs		eslint	src/	:

$	npm	run	lint	

>	guide@0.2.0	lint	/guide

>	eslint	src/

It	doesn’t	print	out	any	linting	errors.	We	can	check	the	exit	code	to	make	sure:

$	echo	$?

0

In	Mac	and	Linux,	each	program	has	an	exit	code.	In	Bash,	we	can	print	out	the	last	exit	code	with		echo	$?	.	An	exit
code	of		0		means	success.

Setting	up	linting

The	npm	package		eslint-plugin-graphql		(already	in	our		package.json			devDependencies)	adds	support	for	GraphQL
to	ESLint.	We	can	tell	ESLint	to	use	it	by	modifying	our	config	file:

	.eslintrc.js	

module.exports	=	{

		extends:	'react-app',

		plugins:	['graphql'],

		parser:	'babel-eslint',

		rules:	{

				'graphql/template-strings':	[

						'error',

						{

								schemaJson:	require('./schema.json')

						}

]

		},

}

	extends:	'react-app'	:	Use	Create	React	App’s	rules	as	a	base
	plugins:	['graphql']	:	Use		eslint-plugin-graphql	

Chapter	6:	React

199

https://github.com/GraphQLGuide/guide/tree/26_0.2.0
https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0
https://eslint.org/docs/about/
https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0

	schemaJson:	require('./schema.json')	:	Look	in	the	current	directory	for	the	schema

What	schema?	We	want	ESLint	to	validate	our	queries	against	our	API’s	schema—the	one	the		api.graphql.guide	
server	has,	that	Playground	shows	us	in	the	SCHEMA	tab.	It	makes	sense	that	ESLint	is	going	to	need	it.	But	how	do
we	get	it	in	a	JSON	file?	There’s	a	tool	on	npm	called		graphql-cli		that	we	can	use	to	download	it.	It’s	in	our
	devDependencies	,	and	the	program	name	is		graphql	.	Our		update-schema		script	uses	it:

	"update-schema":	"graphql	get-schema	-e	https://api.graphql.guide/graphql	-o	schema.json"	

	-e		sets	the	endpoint
	-o		gives	the	output	file	name

So	we	can	run		npm	run	update-schema	,	and	now	we	have	a		schema.json	.	It’s	like	a	verbose	form	of	what	we	see	in
the	Playground	SCHEMA	tab,	and	starts	with:

{

		"data":	{

				"__schema":	{

						"queryType":	{

								"name":	"Query"

						},

						"mutationType":	{

								"name":	"Mutation"

						},

						"subscriptionType":	{

								"name":	"Subscription"

						},

						"types":	[

								{

										"kind":	"OBJECT",

										"name":	"Query",

										"description":	"",

										"fields":	[

												{

														"name":	"sections",

														"description":	"",

														"args":	[

																{

																		"name":	"lastCreatedAt",

																		"description":	"",

																		"type":	{

																				"kind":	"SCALAR",

																				"name":	"Float",

																				"ofType":	null

																		},

																		"defaultValue":	null

																},

																{

																		"name":	"limit",

																		"description":	"",

																		"type":	{

																				"kind":	"SCALAR",

																				"name":	"Int",

																				"ofType":	null

																		},

																		"defaultValue":	null

																}

],

We	can	see	that	a		__schema		has		types		that	include	an	object	with		name:	"Query"		with	a	field	named		sections	
which	has	args		lastCreatedAt		and		limit	.	And	if	we	scroll	down,	we	see	more	familiar	fields	and	types.

Fixing	linting	errors

Now	we	can	try	running	ESLint	again:

$	npm	run	lint

Chapter	6:	React

200

>	guide@0.2.0	lint	/Users/me/gh/guide

>	eslint	src/

/Users/me/gh/guide/src/components/CurrentTemperature.js

		80:5		error		Cannot	query	field	"weather"	on	type	"Query"		graphql/template-strings

/Users/me/gh/guide/src/components/Profile.js

		155:5		error		Cannot	query	field	"launchNext"	on	type	"Query"		graphql/template-strings

/Users/me/gh/guide/src/components/Section.js

		163:9		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		175:7		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		188:9		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		204:9		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		221:5		error		Cannot	query	field	"setSectionScroll"	on	type	"Mutation"		graphql/template-strings

/Users/me/gh/guide/src/lib/apollo.js

		71:3		error		The	Query	definition	is	not	executable		graphql/template-strings

/Users/me/gh/guide/src/lib/withUser.js

		18:5		error		Cannot	query	field	"loginInProgress"	on	type	"Query"		graphql/template-strings

✖	9	problems	(9	errors,	0	warnings)

npm	ERR!	code	ELIFECYCLE

npm	ERR!	errno	1

npm	ERR!	guide@0.2.0	lint:	`eslint	src/`

npm	ERR!	Exit	status	1

npm	ERR!

npm	ERR!	Failed	at	the	guide@0.2.0	lint	script.

npm	ERR!	This	is	probably	not	a	problem	with	npm.	There	is	likely	additional	logging	output	above.

npm	ERR!	A	complete	log	of	this	run	can	be	found	in:

npm	ERR!					/Users/me/.npm/_logs/2019-03-04T01_50_08_741Z-debug.log

We	get	a	lot	of	errors!	And	we	can	see	that	the	exit	code	is	no	longer		0	:

npm	ERR!	code	ELIFECYCLE

npm	ERR!	errno	1

npm	ERR!	guide@0.2.0	lint:	`eslint	src/`

npm	ERR!	Exit	status	1

	Exit	status	1		means	that	the	exit	code	of	the	command		eslint	src/		was		1	.

Let’s	go	through	the	errors.	First	up:

/Users/me/gh/guide/src/components/CurrentTemperature.js

		80:5		error		Cannot	query	field	"weather"	on	type	"Query"		graphql/template-strings

which	is	referring	to:

	src/components/CurrentTemperature.js	

const	TEMPERATURE_QUERY	=	gql`

		query	TemperatureQuery	{

				weather(lat:	$lat,	lon:	$lon)

						@rest(

								type:	"WeatherReport"

								path:	"weather?appid=4fb00091f111862bed77432aead33d04&{args}"

)	{

						main

				}

		}

`

Chapter	6:	React

201

https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0

ESLint	is	looking	at	our		schema.json		and	not	finding		weather		as	a	top-level	Query	field.	Of	course	it’s	not!		weather	
isn’t	part	of	the	Guide	API—it’s	from	our	weather	REST	API.	So	we	don’t	want	this	query	linted	against	the	schema.
We	can	tell	ESLint	to	ignore	this	file	by	adding		/*	eslint-disable	graphql/template-strings	*/		to	the	top	of	the	file.
Now	if	we	re-run		npm	run	lint	,	we	no	longer	see	that	error.

8	errors	left	to	go!	The	next	is:

/Users/me/gh/guide/src/components/Profile.js

		155:5		error		Cannot	query	field	"launchNext"	on	type	"Query"		graphql/template-strings

	launchNext		is	from	our	query	to	the	SpaceX	API,	which	of	course	has	a	different	schema	from	the	rest	of	our	queries.
So	far	we’ve	only	told	ESLint	about		schema.json	,	the	Guide	API	schema.	But		eslint-plugin-graphql		does	support
multiple	schemas.	The	way	it	determines	what	strings	to	parse	as	GraphQL	is	by	the	template	literal	tag	name	(gql).
We	can	use	a	different	tag	name	for	the	SpaceX	query	and	have	that	tag	be	checked	against	a	different	schema.	Let’s
use		spaceql		instead	of	our	current		gql	:

	src/components/Profile.js	

import	spaceql	from	'graphql-tag'

const	LAUNCH_QUERY	=	spaceql`

		query	LaunchQuery	{

				launchNext	{

						details

						launch_date_utc

						launch_site	{

								site_name

						}

						mission_name

						rocket	{

								rocket_name

						}

				}

		}

`

And	we	update	the	config	file:

	.eslintrc.js	

module.exports	=	{

		extends:	'react-app',

		plugins:	['graphql'],

		parser:	'babel-eslint',

		rules:	{

				'graphql/template-strings':	[

						'error',

						{

								schemaJson:	require('./schema.json')

						},

						{

								tagName:	'spaceql',

								schemaJson:	require('./spacex.json')

						}

]

		}

}

We	added	this	object:

{

		tagName:	'spaceql',

		schemaJson:	require('./spacex.json')

}

Chapter	6:	React

202

https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0
https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0

Which	says,	“for	any	GraphQL	document	created	with	the	template	literal	tag	name		spaceql	,	validate	it	against	the
schema	located	in		spacex.json	.”	We	can	get		spacex.json		with		npm	run	update-schema-spacex	:

		"update-schema-spacex":	"graphql	get-schema	-e	https://api.spacex.land/graphql	-o	spacex.json"

And	now	when	we	lint,	we	get	one	fewer	error!	The	next	set	of	errors	is:

/Users/me/gh/guide/src/components/Section.js

		163:9		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		175:7		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		188:9		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		204:9		error		Cannot	query	field	"scrollY"	on	type	"Section"												graphql/template-strings

		221:5		error		Cannot	query	field	"setSectionScroll"	on	type	"Mutation"		graphql/template-strings

	scrollY		is	the	piece	of	local	state	in	our	Section	queries:

	src/components/Section.js	

const	NEXT_SECTION_QUERY	=	gql`

		query	NextSection($id:	String!)	{

				section(id:	$id)	{

						id

						next	{

								id

								content

								views

								scrollY	@client

						}

				}

		}

`

And		setSectionScroll		is	our	local	mutation.	ESLint	will	find	neither	of	these	in	the	Guide	API	schema.	We	can
suppress	the	errors	by	adding	this	line	to	the	top	of	the	file:

/*	eslint-disable	graphql/template-strings	*/

2	more	errors	to	go!	Here’s	the	next:

/Users/me/gh/guide/src/lib/apollo.js

		71:3		error		The	Query	definition	is	not	executable		graphql/template-strings

This	refers	to	the		Query		in	our	local	state	schema:

const	typeDefs	=	gql`

		type	Query	{

				loginInProgress:	Boolean

		}

		type	Mutation	{

				setSectionScroll(id:	String!,	scrollY:	Int!):	Boolean

		}

`

Instead	of		eslint-disable	ing	the	whole	file,	let’s	just	disable	part	of	it.	That	way	if	we	later	add	a	document	to	a
different	part	of	the	file,	it	will	be	linted.

	src/lib/apollo.js	

...

/*	eslint-disable	graphql/template-strings	*/

Chapter	6:	React

203

https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0
https://github.com/GraphQLGuide/guide/compare/26_0.2.0...27_0.2.0

const	typeDefs	=	gql`

		type	Query	{

				loginInProgress:	Boolean

		}

		type	Mutation	{

				setSectionScroll(id:	String!,	scrollY:	Int!):	Boolean

		}

`

/*	eslint-enable	graphql/template-strings	*/

...

And	the	last	error	is	another	local	state	field—let’s	just	put	the		eslint-disable		comment	at	the	top	of
	src/lib/withUser.js	.

/Users/me/gh/guide/src/lib/withUser.js

		18:5		error		Cannot	query	field	"loginInProgress"	on	type	"Query"		graphql/template-strings

Using	linting

Usually	people	don’t	manually	run		npm	run	lint		on	the	command	line.	Instead,	they	set	up	one	or	more	of	the
following,	which	all	automatically	run	the	linter:

Editor	integration
Pre-commit	hook
Continuous	integration

Editor	integration

Most	editors	have	a	linting	plugin.	VSCode	has	this	ESLint	plugin.	It	looks	for	a	configuration	file	in	the	current
workspace	(for	us	it	would	find		.eslintrc.js)	and	runs	ESLint	in	the	background	whenever	we	type	something	new
into	the	editor.	For	instance	if	we	type	in		first		as	a	field	of		currentUser	,	it	is	underlined:

Chapter	6:	React

204

https://github.com/Microsoft/vscode-eslint

And	if	we	hover	over	the	word,	we	see	the	linting	error:

Cannot	query	field	"first"	on	type	"User".	Did	you	mean	"firstName"?

Since	ESLint	has	the	schema,	it	knows	that		currentUser		resolves	to	a		User	,	and	that		first		isn’t	one	of	the	fields
of	the		User		type.	When	we	change	it	to		firstName	,	the	error	underline	goes	away.

Some	linting	errors	have	automatic	fixes,	and	we	can	have	the	plugin	make	those	fixes	whenever	we	save	the	file	by
enabling	this	setting:

"eslint.autoFixOnSave":	true

Pre-commit	hook

Git	has	a	lot	of	hooks—times	when	git	will	run	a	program	for	you.	One	such	hook	is	pre-commit.	A	pre-commit	hook
will	be	called	when	a	dev	enters		git	commit		and	before	git	actually	does	the	committing.	If	the	hook	program	ends
with	a	non-zero	exit	code,	the	commit	will	be	canceled.	The	best	way	to	set	up	git	hooks	in	our	project	is	with	Husky.
To	do	that,	we	would:

npm	install	husky	--save-dev

And	add	to	our		package.json	:

{

		"husky":	{

				"hooks":	{

						"pre-commit":	"npm	run	lint"

				}

		}

}

Then	if	we	tried	to	commit	but		npm	run	lint		failed,	the	commit	would	be	canceled,	and	we	would	see	the	ESLint
output	with	the	problem(s)	we	need	to	fix.

Continuous	integration

Chapter	6:	React

205

https://git-scm.com/docs/githooks
https://github.com/typicode/husky

Background:	Continuous	integration	(CI)

Our	CI	server	can	do		npm	run	lint		as	one	of	its	tests,	prevent	deployment	if	linting	fails,	display	a	build	failure
symbol	next	to	the	commit	or	PR,	and	link	to	its	site	where	we	can	view	the	error	output.

Uploading	files
Background:	CDN

There	are	two	ways	to	do	file	uploads:	client-side	and	server-side.	In	client-side	uploads,	the	client	sends	the	file
directly	to	a	cloud	service	that	stores	the	files.	In	server-side,	the	client	sends	the	file	to	our	server,	which	then	stores	it
someplace	(either	on	a	hard	drive	or	with	a	cloud	service—usually	the	latter).	For	ease	of	coding,	we	recommend
client-side.	The	only	possible	downside	is	that	someone	could	upload	a	lot	of	files	to	our	service,	costing	us	more
money.	However,	in	the	unlikely	event	that	this	becomes	a	problem,	there	are	ways	with	most	services	to	make	sure
only	logged-in	users	can	upload.

The	two	main	services	we	recommend	are:

Cloudinary	(file	storage,	CDN,	and	media	file	processor)
Amazon	S3	(file	storage)	and	CloudFront	(CDN)

Usually	an	app	needs	to	process	images	or	videos—resizing	an	image,	centering	on	a	face	and	cropping	it,
brightening,	etc—before	using	them.	For	these	apps,	we	recommend	Cloudinary	as	the	all-in-one	solution.	If	you’re
just	saving	files	that	need	to	be	stored,	and	maybe	downloaded	later	unchanged,	then	S3	is	fine.

Client-side

There	are	two	ways	to	upload	to	Cloudinary	from	the	client—we	can	use	their	upload	UI,	or	we	can	create	our	own.
Here’s	what	theirs	looks	like:

Chapter	6:	React

206

https://cloudinary.com/documentation/upload_widget

When	we	open	the	widget,	we	give	it	a	callback.	The	user	uses	the	widget	to	upload	a	file	to	our	Cloudinary	account,
and	the	widget	calls	our	callback,	providing	us	the	ID	of	the	file	as	an	argument.	We	send	the	ID	to	our	server	in	a
mutation,	and	our	server	saves	it	to	our	database.	We	use	the	ID	to	construct	the	URL	of	the	file,	for	example:

http://res.cloudinary.com/graphql/guide/file-id.jpg

If	we	want	our	own	UI,	we	can	render	a	file	input	styled	however	we	want,	and	then	we	POST	the	input	file	to	the
Cloudinary	server	like	in	this	React	example.	(And	then,	as	before,	we	get	an	ID	back	to	send	in	a	mutation	to	the
server.)

Server-side

Here’s	what	we	would	do	to	upload	a	file	to	our	server:

npm	install	apollo-upload-client

	apollo.js	

import	{	ApolloClient	}	from	'apollo-client'

import	{	InMemoryCache	}	from	'apollo-cache-inmemory'

import	{	createUploadLink	}	from	'apollo-upload-client'

const	client	=	new	ApolloClient({

		cache:	new	InMemoryCache(),

		link:	createUploadLink({

				uri:	'https://api.graphql.guide/graphql'

		})

})

Chapter	6:	React

207

https://github.com/cloudinary/cloudinary-react/blob/f83e4e561f9709268afbe11812f116f382cc117f/samples/photo_album/src/components/PhotosUploader.js#L99-L119

	FileUpload.js	

import	gql	from	'graphql-tag'

import	{	Mutation	}	from	'react-apollo'

const	UPLOAD_FILE_MUTATION	=	gql`

		mutation	UploadFile($file:	Upload!)	{

				uploadFile(file:	$file)	{

						id

						fileName

				}

		}

`

const	FileUpload	=	()	=>	(

		<Mutation	mutation={UPLOAD_FILE_MUTATION}>

				{mutate	=>	(

						<input

								type="file"

								required

								onChange={({

										target:	{

												validity,

												files:	[file]

										}

								})	=>	validity.valid	&&	mutate({	

										variables	:	{	file	}	

								})}

						/>

)}

		</Mutation>

)

export	default	FileUpload

Our	server	needs	to	support	the	GraphQL	multipart	request	spec.	We’ll	see	in	the	server	chapter	how	to	do	this	in
Node	using		graphql-upload	.

Testing
We’re	holding	off	on	writing	this	section	until	the	hooks+suspense	version	of	React	Apollo	comes	out.	For	now,	we
recommend	the	built-in		<MockedProvider>		for	the	easiest	setup	or	this	approach	for	the	most	succinct	test	code.

We	also	recommend	using	Jest	and		react-testing-library	.	If	you’d	like	a	video	introduction	to	them,	as	well	as
testing	in	general,	we	recommend	this	course.

Chapter	6:	React

208

https://github.com/jaydenseric/graphql-multipart-request-spec#server
https://github.com/jaydenseric/graphql-upload
https://www.apollographql.com/docs/react/recipes/testing.html
https://medium.freecodecamp.org/a-new-approach-to-mocking-graphql-data-1ef49de3d491
https://jestjs.io/
https://testing-library.com/react
https://testingjavascript.com/

Chapter	7:	Vue
We	haven't	gotten	to	this	chapter	yet!	For	now,	check	out	this	tutorial.

Chapter	7:	Vue

209

https://www.howtographql.com/vue-apollo/0-introduction/

Chapter	8:	React	Native
We	haven't	gotten	to	this	chapter	yet,	but	most	things	from	the	React	chapter	apply	to	React	Native.	For	now,	here's	a
great	small	example,	and	a	paid	course.

Chapter	8:	React	Native

210

https://www.apollographql.com/docs/react/recipes/simple-example.html
https://www.leveluptutorials.com/tutorials/level-2-react-native-with-graphql?ref=guide

Chapter	9:	iOS
We	haven't	gotten	to	this	chapter	yet!	For	now,	check	out	the	Apollo	iOS	docs

Chapter	9:	iOS

211

https://www.apollographql.com/docs/ios/

Chapter	10:	Android
We	haven't	gotten	to	this	chapter	yet!	For	now,	check	out	the	Apollo	Android	docs.

Chapter	10:	Android

212

https://github.com/apollographql/apollo-android

Chapter	11:	Server	Dev
Chapter	contents:

Introduction
Why	build	a	GraphQL	server?
What	kind	of	GraphQL	server	should	I	build?

Building
Project	setup
Types	and	resolvers
Authenticating
Data	sources

Setting	up
File	structure
Creating	reviews

Custom	scalars
Creating	users

Protecting	with	secret	key
Setting	user	context
Linking	users	to	reviews

Authorizing
Errors

Nullability
Union	errors
formatError

Logging	errors
Masking	errors

Error	checking
Custom	errors

Subscriptions
githubStars
reviewCreated

Testing
Static	testing
Review	integration	tests
Code	coverage
User	integration	tests
Unit	tests
End-to-end	tests

Production
Deployment

Options
Deploying
Environment	variables

Database	hosting
MongoDB	hosting
Redis	hosting

Redis	PubSub
Redis	caching

Chapter	11:	Server	Dev

213

Querying	in	production
Analytics
Error	reporting

More	data	sources
SQL

SQL	setup
SQL	data	source
SQL	testing

REST
GraphQL
Custom	data	source
Prisma

Extended	topics
Mocking
Pagination

Offset-based
Cursors

after	an	ID
Relay	cursor	connections

File	uploads
Client-side
Server-side

Schema	validation
Apollo	federation

Federated	service
Federated	gateway
Extending	entities
Managed	federation
Deploying	federation

Hasura
Schema	design

One	schema
User-centric
Easy	to	understand
Easy	to	use
Mutations

Arguments
Payloads

Versioning
Custom	schema	directives

@tshirt
@upper
@auth

Subscriptions	in	depth
Server	architecture
Subscription	design

Security
Auth	options

Authentication
Authorization

Denial	of	service

Chapter	11:	Server	Dev

214

Performance
Data	fetching
Caching

Future

Introduction
Background:	HTTP,	Server

Welcome	to	the	server	chapter!	This	is	the	last—and	longest—chapter.	We’ll	learn	most	of	the	concepts	through
building	the	Guide	API	server,	which	backs	the	apps	we	built	in	the	client	chapters.	The	server	will	primarily	store	data
in	MongoDB,	but	we’ll	also	connect	to	several	other	data	sources,	including	SQL	and	REST.	We’ll	write	it	in
JavaScript,	but	all	server-side	GraphQL	libraries	use	the	same	execution	method,	and	most	of	the	concepts	in	this
chapter	will	apply	to	writing	GraphQL	servers	in	other	languages.	To	see	the	differences,	check	out	these	backend
tutorials:

Java
Python
Ruby
Scala
Elixir

There	are	also	GraphQL	libraries	in	these	languages:

.NET
Clojure
Go
PHP

This	chapter	is	split	into	five	parts:

Introduction
Building
Production
More	data	sources
Extended	topics

In	Building,	we	build	a	GraphQL	server	from	scratch,	including	authentication	and	authorization,	query	and	mutation
resolvers	that	talk	to	a	database,	error	handling,	subscriptions,	and	testing.	In	Production,	we	deploy	our	server	and
update	it	with	things	that	are	helpful	to	have	in	production,	like	error	reporting,	analytics,	and	security	against	attack.	In
More	data	sources,	we	connect	our	server	to	other	databases	and	a	REST	API.	In	Extended	topics,	we	learn	about
various	new	server-side	topics	and	go	into	more	depth	on	previous	topics	like	the	schema,	subscriptions,	and	auth.

Why	build	a	GraphQL	server?
There	are	three	main	reasons	why	we	might	decide	our	server	should	be	a	GraphQL	server:

1.	 So	we	can	use	GraphQL	on	the	client	and	gain	all	the	client-side	benefits	of	GraphQL.
2.	 To	simplify	our	server	code:	instead	of	setting	up	many	endpoints	and	implementing	fetching	and	formatting	logic

for	each,	we	set	up	one	endpoint	and	write	a	single	resolver	for	each	data	type.
3.	 To	avoid	having	to	create	new	endpoints	or	new	APIs	in	the	future.

Chapter	11:	Server	Dev

215

https://www.howtographql.com/graphql-java/0-introduction/
https://www.howtographql.com/graphql-python/0-introduction/
https://www.howtographql.com/graphql-ruby/0-introduction/
https://www.howtographql.com/graphql-scala/0-introduction
https://www.howtographql.com/graphql-elixir/0-introduction/
https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/walmartlabs/lacinia
https://github.com/graphql-go/graphql
https://github.com/webonyx/graphql-php

For	coders,	#1	and	#2	are	often	the	most	compelling,	because	it	improves	our	quality	of	life	 .	For	companies,	#3	is
often	the	most	compelling,	since	they	save	time	and	money:	they	get	a	single,	flexible	API	that	covers	all	their
business	data,	which	means	that	instead	of	having	to	create	new	endpoints	or	entire	APIs	for	new	features	or	apps,
they	can	just	use	their	existing	GraphQL	API	(and	in	some	cases	add	fields	and	resolvers).

What	kind	of	GraphQL	server	should	I	build?
Actually,	the	first	choice	we	have	is	whether	to	build	it	or	generate	it	 .	There	are	services	that	can	save	us	a	lot	of
time	by	generating	a	production-ready	GraphQL	backend	for	us.	We'll	go	over	the	pros/cons	and	how	to	set	one	up	in
the	Hasura	section.

If	we	do	decide	to	build	our	own	server,	there	are	two	situations	we	might	be	in:

1.	 Existing	project,	in	which	case	we’ll	either	be	adding	a	GraphQL	layer	in	front	of	our	existing	servers,	or	adding
a	GraphQL	endpoint	to	existing	servers.

2.	 New	project	(a.k.a.	greenfield),	in	which	case	we	have	a	choice	of	which	architecture	to	use.

There	are	two	main	architectures:

1.	 Microservices	(a	collection	of	servers	that	each	cover	a	different	business	capability).	GraphQL	as	the	API
gateway:	the	client	talks	to	the	GraphQL	server	API	gateway,	which	talks	to	services	(via	GraphQL,	REST,	gRPC,
Thrift,	etc),	which	talk	to	databases.

2.	 Monolith	(a	single	server	that	covers	all	business	logic).	GraphQL	as	the	application	layer:	the	client	talks	to	the
GraphQL	server,	which	talks	directly	to	databases.

Microservices	are	in	vogue	and	the	word	“monolith”	is	often	used	with	a	scornful	tone,	but	in	most	cases,	it’s	better	to
have	a	monolith.	Martin	Fowler,	one	of	the	leaders	in	software	design,	wrote:

So	my	primary	guideline	would	be	don’t	even	consider	microservices	unless	you	have	a	system	that’s	too
complex	to	manage	as	a	monolith.	The	majority	of	software	systems	should	be	built	as	a	single	monolithic
application.	Do	pay	attention	to	good	modularity	within	that	monolith,	but	don’t	try	to	separate	it	into	separate
services.

While	there	are	a	lot	of	huge	tech	companies	that	use	microservices	and	are	better	off	for	it,	they’re	better	off	because
they’re	huge—not	because	microservices	are	a	general	good	practice.

If	we	have	an	existing	monolith,	it	often	makes	sense	to	add	a	GraphQL	endpoint	to	that	server	instead	of	putting	a
GraphQL	server	in	front	of	the	monolith.	For	example,	if	we	have	an	Express	monolith	that	has	a	lot	of	thin	REST
routes	that	call	model	functions	that	contain	the	business	logic	and	data	fetching,	then	it	would	be	easy	to	add	a
	/graphql		route	with		apollo-server-express		and	implement	resolvers	that	call	the	same	model	functions	as	the	REST
routes.	Or	if	all	of	our	logic	was	in	the	routes	themselves,	and	we	didn't	need	to	continue	supporting	the	REST	API,	we
could	move	the	code	we	needed	over	to	resolvers	and	Apollo	data	sources.

When	we’re	adding	a	GraphQL	layer	in	front	of	an	existing	backend,	whether	it’s	a	microservices	or	monolith	backend,
we	can	make	the	choice	between	continuing	to	develop	the	existing	backend	or	gradually	moving	logic	to	the
GraphQL	layer.	If	we’re	doing	microservices	and	want	to	keep	that	architecture,	then	it’s	easy	to	keep	implementing
services	(in	whatever	language(s)	we	implement	services)	and	either	extend	the	GraphQL	schema	and	resolvers	or
use	schema	federation.

Another	question	is	what	language	to	write	our	GraphQL	server	in.	In	the	case	of	adding	to	an	existing	monolith,	we’ll
use	the	GraphQL	server	library	for	the	same	language.	In	all	other	cases	(new	projects	or	a	GraphQL	layer	in	front	of
existing	microservices	or	monoliths),	we	generally	recommend	JavaScript.	It’s	by	far	the	most	popular	type	of
GraphQL	server,	and	has	thus	developed	the	best	ecosystem	of	libraries	and	services.

Chapter	11:	Server	Dev

216

https://martinfowler.com/bliki/MicroservicePremium.html
https://www.apollographql.com/docs/apollo-server/essentials/server#middleware

The	server	we’ll	be	creating	in	this	chapter	is	a	greenfield	monolith,	so	it	will	talk	directly	to	the	database.	However,
most	of	the	concepts	will	carry	over	to	the	microservice	model.	The	largest	difference	will	be	either:

using	schema	federation	to	combine	multiple	GraphQL	services
fetching	data	and	resolving	mutations	by	talking	to	the	services	(e.g.	with	REST)	instead	of	the	database

We’ll	go	over	both	of	these	options	later	in	the	chapter.

Building
Background:	Node	&	npm	&	nvm,	git,	JavaScript

Project	setup
Types	and	resolvers
Authenticating
Data	sources

Setting	up
File	structure
Creating	reviews

Custom	scalars
Creating	users

Protecting	with	secret	key
Setting	user	context
Linking	users	to	reviews

Authorizing
Errors

Nullability
Union	errors
formatError

Logging	errors
Masking	errors

Error	checking
Custom	errors

Subscriptions
githubStars
reviewCreated

We’re	using	Node	because	it’s	the	most	popular	platform	for	GraphQL	Servers	and	has	the	best	ecosystem.
JavaScript	is	also	the	most	used	programming	language	in	the	world!	ⒿⓈ:arrow_up:

Project	setup
There	are	a	few	different	things	to	set	up	when	starting	a	new	Node	project.	We’ve	set	them	up	in	branch		0		of	our
server	repo,	github.com/GraphQLGuide/guide-api:

$	git	clone	https://github.com/GraphQLGuide/guide-api.git

$	cd	guide-api/

$	git	checkout	0_0.2.0

$	npm	install

We	now	have	these	files:

Chapter	11:	Server	Dev

217

https://github.com/GraphQLGuide/guide-api

.babelrc

.git/

.gitignore

.nvmrc

.prettierrc

node_modules/

package-lock.json

package.json

Let’s	look	at	each	to	see	what	they’re	for.

	.babelrc	:

{

		"presets":	[

				[

						"@babel/preset-env",

						{

								"targets":	{

										"node":	"12.0.0"

								}

						}

]

],

		"plugins":	["import-graphql"]

}

	@babel/preset-env		transpiles	JavaScript	to	work	in	the	target	environment—where	we’ll	be	running	the	code.	In
chapter	6,	that	was	the	browser.	For	this	chapter,	the	target	environment	is	Node.	We’ll	target	version		12.0.0		so	that
the	transpiled	code	will	work	in	that	or	higher	versions.

	.git/	:	directory	where	git	stores	its	data.
	.gitignore	:

node_modules/

dist/

A	list	of	which	files	and	folders	we	don’t	want	committed	to	git.	We	don’t	want		node_modules/		as	they’re	added	when
we		npm	install	.	And		dist/		will	be	generated	by	the	build	script	in	our		package.json	.

	.nvmrc	:

12

The	file	that	tells	nvm	which	version	of	Node	to	use.		12		means	the	latest	stable		12.*		version.

	.prettierrc	:

singleQuote:	true

semi:	false

trailingComma:	none

arrowParens:	avoid

Because	single	quotes	and	no	semicolons	is	the	One	True	Way	to	style	JavaScript.

Just	kidding—there	isn’t	one	right	way	to	style	code.	This	is	just	author	Loren’s	preference	 .

And	the	last	two	settings	were	the	Prettier	default	when	this	chapter	was	written.

	node_modules/	:	directory	to	which	npm	downloads	all	of	the	packages	our	code	depends	on.
	package-lock.json	:	precise	current	versions	of	all	the	packages.

Chapter	11:	Server	Dev

218

https://github.com/GraphQLGuide/guide-api/blob/0_0.2.0/.babelrc

	package.json	:

{

		"name":	"guide-api",

		"version":	"0.1.0",

		"description":	"api.graphql.guide",

		"scripts":	{

				"dev":	"nodemon	-e	js,graphql	--exec	'npm	run	update-graphql-imports	&&	babel-node	src/index.js'",

				"start":	"node	dist/index.js",

				"build":	"babel	src	-d	dist	--ignore	**/*.test.js",

				"update-graphql-imports":	"rm	-rf	./node_modules/.cache/@babel"

		},

		"engines":	{

				"node":	">=12"

		},

		"dependencies":	{

				"@sentry/node":	"5.15.5",

				"apollo-datasource-mongodb":	"0.2.6",

				"apollo-datasource-rest":	"0.8.1",

				"apollo-server":	"2.12.0",

				"apollo-server-cache-redis":	"1.1.6",

				"apollo-server-testing":	"2.12.0",

				"aws-sdk":	"2.666.0",

				"casual":	"1.6.2",

				"datasource-sql":	"1.3.0",

				"date-fns":	"2.12.0",

				"dotenv":	"8.2.0",

				"graphql":	"14.6.0",

				"graphql-redis-subscriptions":	"2.2.1",

				"graphql-request":	"1.8.2",

				"graphql-tools":	"4.0.8",

				"ioredis":	"4.16.3",

				"join-monster":	"2.1.1",

				"join-monster-graphql-tools-adapter":	"0.1.0",

				"jsonwebtoken":	"8.5.1",

				"jwks-rsa":	"1.8.0",

				"knex":	"0.21.1",

				"lodash":	"4.17.15",

				"mongodb":	"3.5.7",

				"sqlite3":	"4.2.0"

		},

		"devDependencies":	{

				"@babel/cli":	"7.8.4",

				"@babel/core":	"7.9.6",

				"@babel/node":	"7.8.7",

				"@babel/preset-env":	"7.9.6",

				"apollo-link":	"1.2.14",

				"apollo-link-http":	"1.5.17",

				"babel-plugin-import-graphql":	"2.7.0",

				"eslint":	"6.8.0",

				"eslint-plugin-node":	"11.1.0",

				"husky":	"4.2.5",

				"jest":	"25.5.2",

				"node-fetch":	"2.6.0",

				"nodemon":	"2.0.3"

		},

		"homepage":	"https://github.com/GraphQLGuide/guide-api",

		"repository":	{

				"type":	"git",

				"url":	"git+https://github.com/GraphQLGuide/guide-api"

		},

		"bugs":	{

				"url":	"https://github.com/GraphQLGuide/guide-api/issues"

		},

		"private":	true,

		"author":	"The	GraphQL	Guide	<hi@graphql.guide>	(https://graphql.guide)"

}

Let’s	look	at	the	scripts	first:

		"scripts":	{

Chapter	11:	Server	Dev

219

https://github.com/GraphQLGuide/guide-api/blob/0_0.2.0/package.json

				"dev":	"nodemon	-e	js,graphql	--exec	'npm	run	update-graphql-imports	&&	babel-node	src/index.js'",

				"start":	"node	dist/index.js",

				"build":	"babel	src	-d	dist	--ignore	**/*.test.js",

				"update-graphql-imports":	"rm	-rf	./node_modules/.cache/@babel"

		},

	npm	run	dev		will	watch	our	JS	and	GraphQL	files,	and	whenever	one	of	them	changes,	it	will	transpile	them	with
Babel	and	run	them	with	Node.
	npm	start		will	start	our	server	in	production	using	the	transpiled	version	of	our	code	located	in		dist/	.
	npm	run	build		will	transpile	our	code	from		src/		to		dist/		(ignoring	test	files).
	npm	update-graphql-imports		is	used	by		npm	run	dev		to	clear	the	babel	GraphQL	plugin	cache.

The		engines		attribute,	similar	to		preset-env	’s		target	,	describes	where	the	code	is	meant	to	be	run.	For	us,	it’s
meant	to	be	run	in	any	version	8	or	higher	of	Node.

		"engines":	{

				"node":	">=12"

		},

All	together,	what	we’ve	got	configured	is:

Git
npm
nvm
Babel
Prettier

Apollo	Server
If	you’re	jumping	in	here,		git	checkout	0_0.2.0		(tag	0_0.2.0,	or	compare	0...1)

It	takes	less	than	20	lines	of	JavaScript	to	get	a	working	GraphQL	server	up	and	running!	 	The	best	GraphQL
server	library	is		apollo-server	,	and	here’s	the	basic	setup:

	src/index.js	

import	{	ApolloServer,	gql	}	from	'apollo-server'

const	server	=	new	ApolloServer({

		typeDefs:	gql`

				type	Query	{

						hello:	String!

				}

		`,

		resolvers:	{

				Query:	{

						hello:	()	=>	'ɍ ɏ Ɏ '

				}

		}

})

server

		.listen({	port:	4000	})

		.then(({	url	})	=>	console.log(`GraphQL	server	running	at	${url}`))

The	main	export	of		apollo-server		is		ApolloServer	,	and	its	two	required	parameters	are:

	typeDefs	:	our	schema,	created	with	the		gql		template	literal	tag.
	resolvers	:	an	object	of	resolver	functions	that	match	our	schema	in	structure.	Each	type—	Query	,		Mutation	,
	User	,		Chapter	,	etc.—is	a	top-level	attribute,	and	the	next	level	is	that	type’s	field	names.

Chapter	11:	Server	Dev

220

https://docs.npmjs.com/files/package.json#engines
https://github.com/GraphQLGuide/guide-api/tree/0_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/0_0.2.0...1_0.2.0
https://www.apollographql.com/docs/apollo-server/
https://github.com/GraphQLGuide/guide-api/blob/1_0.2.0/src/index.js
https://www.apollographql.com/docs/apollo-server/api/apollo-server#apolloserver
https://www.apollographql.com/docs/apollo-server/api/apollo-server#gql

We	start	the	server	by	calling		.listen()		on	a	port.	When	it’s	done	starting	up,	the	Promise	is	resolved	with	the	URL
—in	our	case,		http://localhost:4000	.

We	can	test	it	out	with	our		dev		script:

$	npm	run	dev

>	guide-api@0.1.0	dev	/guide-api

>	babel-watch	src/index.js

GraphQL	server	running	at	http://localhost:4000/

After	a	moment,	the	program	gets	to	the	last	line	of	our	code,	which	logs		Server	running	at	http://localhost:4000/	.
When	we	edit		src/index.js	—for	instance	by	changing		console.log	—the	server	gets	restarted:

$	npm	run	dev

>	guide-api@0.1.0	dev	/guide-api

>	babel-watch	src/index.js

GraphQL	server	running	at	http://localhost:4000/

>>>	RESTARTING	<<<

GraphQL	server	running	with	new	console.log	statement	at	http://localhost:4000/

To	stop	the	server,	we	can	press	the		control-c		key	combination.

So	we’ve	got	the	server	running,	but	does	it	work?	Let’s	open	up	the	URL	in	a	browser:

http://localhost:4000

By	default	Apollo	Server	loads	GraphQL	Playground,	an	IDE	for	writing	GraphQL	queries.	We	can	see	our	tiny
schema	by	clicking	on	“DOCS”	on	the	right:

And	we	can	test	out	our	one	query:

Chapter	11:	Server	Dev

221

https://www.apollographql.com/docs/apollo-server/api/apollo-server#apolloserverlistenoptions-promise
http://localhost:4000

And	it	works!

Types	and	resolvers
If	you’re	jumping	in	here,		git	checkout	1_0.2.0		(tag	1_0.2.0,	or	compare	1...2)

The	heart	of	a	GraphQL	server	is	the	types	and	resolvers.	The	schema	has	the	types	and	each	type’s	fields,	and	the
resolvers	resolve	each	field.	We	generally	resolve	fields	by	fetching	data	from	a	data	source,	formatting	fetched	data,
or	enacting	mutations.

Let’s	add	some	more	types	and	fields	to	get	a	better	sense	of	how	they	match	up	with	resolvers.	We	want	people	to
be	able	to	submit	reviews	for	the	book,	so	we	need	a	mutation:

type	Mutation	{

		createReview(text:	String!,	stars:	Int):	Review

}

The	convention	for	naming	a	creation	mutation	is		create<Type>	,	and	it	usually	resolves	to	that	type	(hence		:	Review	
at	the	end).	However,	it’s	best	practice	to	use	a	single	input	type	as	an	argument	instead	of	listing	out	all	the	scalars
needed.	So	let’s	change	it	to:

type	Mutation	{

		createReview(input:	CreateReviewInput!):	Review

}

input	CreateReviewInput	{

		text:	String!

		stars:	Int

}

We	also	want	people	to	be	able	to	read	past	reviews,	so	we	add	a	Query	field:

type	Query	{

		hello:	String!

		reviews:	[Review!]!

}

Chapter	11:	Server	Dev

222

https://github.com/GraphQLGuide/guide-api/tree/1_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/1_0.2.0...2_0.2.0

We	don’t	have	a		Review		type	yet,	so	we	need	to	add	that:

type	Review	{

		text:	String!

		stars:	Int

		fullReview:	String!

}

All	together,	our	new	schema	looks	like	this:

	src/index.js	

const	server	=	new	ApolloServer({

		typeDefs:	gql`

				type	Query	{

						hello:	String!

						reviews:	[Review!]!

				}

				type	Review	{

						text:	String!

						stars:	Int

						fullReview:	String!

				}

				type	Mutation	{

						createReview(review:	CreateReviewInput!):	Review

				}

				input	CreateReviewInput	{

						text:	String!

						stars:	Int

				}

		`,

		resolvers:	{	...	}

})

We	need	a	resolver	for	each	field	except	for	the		input		type.	(Input	types	are	only	used	for	mutation	arguments:	fields
can’t	resolve	to	input	types,	so	input	types	don’t	need	resolvers.)	The	structure	of	our		resolvers		object	matches	the
schema,	so	it	should	look	like:

const	server	=	new	ApolloServer({

		typeDefs:	...

		resolvers:	{

				Query:	{

						hello:	()	=>	

						reviews:	()	=>	

				},

				Review:	{

						text:	()	=>	

						stars:	()	=>	

						fullReview:	()	=>	

				}

				Mutation:	{

						createReview:	()	=>	

				},

		}

})

Now	let’s	fill	them	in!	We’ll	start	with		createReview	:

const	reviews	=	[

		{

				text:	'Super-duper	book.',

				stars:	5

		}

]

const	server	=	new	ApolloServer({

		typeDefs:	...

Chapter	11:	Server	Dev

223

https://github.com/GraphQLGuide/guide-api/compare/1_0.2.0...2_0.2.0

		resolvers:	{

				...

				Mutation:	{

						createReview:	(_,	{	review	})	=>	{

								reviews.push(review)

								return	review

						}

				}

		}

})

We	don’t	need	the	first	resolver	parameter,	just	the	second,	which	contains	the	mutation	argument—the	review.	We
add	it	to	our	array	of	reviews	and	return	it	(since	our	schema	says	that		createReview		resolves	to	an	object	of	type
	Review).

Next	we	can	implement	the		reviews		Query	field:

const	reviews	=	[

		{

				text:	'Super-duper	book.',

				stars:	5

		}

]

const	server	=	new	ApolloServer({

		typeDefs:	...

		resolvers:	{

				Query:	{

						hello:	...

						reviews:	()	=>	reviews

				}

		}

})

For		Query.reviews		we	just	return	our	array	of	reviews.	But	a	GraphQL	server	doesn’t	just	return	the		reviews		array	to
the	client:	it	looks	at	the	schema,	sees	that		Query.reviews		resolves	to		[Review!]!	,	checks	to	make	sure	the
	reviews		array	is	non-null,	and	then	resolves	each	object	in	the	array	as	a		Review	.	The	way	it	does	that	is	by	calling
	Review		field	resolvers,	which	we	also	have	to	define:

const	reviews	=	[

		{

				text:	'Super-duper	book.',

				stars:	5

		}

]

const	server	=	new	ApolloServer({

		typeDefs:	...

		resolvers:	{

				Query:	{

						hello:	...

						reviews:	()	=>	reviews

				},

				Review:	{

						text:	review	=>	review.text

						stars:	review	=>	review.stars

						fullReview:	review	=>

								`Someone	on	the	internet	gave	${review.stars}	stars,	saying:	"${

										review.text

								}"`

				}

		}

})

When	the	GraphQL	server	calls	a		Review		field	resolver,	it	provides	the	object	as	the	first	parameter,	for	example:

Chapter	11:	Server	Dev

224

{

		text:	'Super-duper	book.',

		stars:	5

}

The		text		and		stars		type	fields	we	can	just	resolve	to	the	corresponding	object	properties	(for	example,		text:
review	=>	review.text).	And	we	can	actually	take	the		text		and		stars		resolvers	out,	because	Apollo	Server	will	do
that	by	default.	The		fullReview		field	isn’t	a	property	on	the	object,	so	the	default	resolver	won't	work.	So	we	define
our	own	resolver,	returning	a	string	constructed	from	the	review’s	properties.

All	together,	without	the	extraneous	object	property	resolvers,	we	have:

	src/index.js	

import	{	ApolloServer,	gql	}	from	'apollo-server'

const	reviews	=	[

		{

				text:	'Super-duper	book.',

				stars:	5

		}

]

const	server	=	new	ApolloServer({

		typeDefs:	gql`

				type	Query	{

						hello:	String!

						reviews:	[Review!]!

				}

				type	Review	{

						text:	String!

						stars:	Int

						fullReview:	String!

				}

				type	Mutation	{

						createReview(review:	CreateReviewInput!):	Review

				}

				input	CreateReviewInput	{

						text:	String!

						stars:	Int

				}

		`,

		resolvers:	{

				Query:	{

						hello:	()	=>	'ɍ ɏ Ɏ ',

						reviews:	()	=>	reviews

				},

				Review:	{

						fullReview:	review	=>

								`Someone	on	the	internet	gave	${review.stars}	stars,	saying:	"${

										review.text

								}"`

				},

				Mutation:	{

						createReview:	(_,	{	review	})	=>	{

								reviews.push(review)

								return	review

						}

				}

		}

})

server

		.listen({	port:	4000	})

		.then(({	url	})	=>	console.log(`GraphQL	server	running	at	${url}`))

We	can	try	it	out	with		npm	run	dev	,	see	that	Playground	loads,	and	try	out	the	new	query:

Chapter	11:	Server	Dev

225

https://github.com/GraphQLGuide/guide-api/compare/1_0.2.0...2_0.2.0

{

		reviews	{

				text

				fullReview

				stars

		}

}

localhost:4000:		{	reviews	{	text	fullReview	stars	}	}	

We	see	our	one	hard-coded	review.	Now	if	we	do	our	mutation	followed	by	the		reviews		query,	we’ll	see	both	that	and
the	new	review:

localhost:4000:		mutation	{	createReview(review:	{	text:	"Passing",	stars:	3	})	{	text	}	}	

Chapter	11:	Server	Dev

226

http://localhost:4000/
http://localhost:4000/

localhost:4000:		{	reviews	{	text	fullReview	stars	}	}	

Notice	how	the	only	things	we	changed	in	our	server	were	our	types	(in	the	Apollo	Server		typeDefs		parameter)	and
our	resolvers.	These	two	things	(including	code	called	by	our	resolver	functions)	will	be	the	bulk	of	the	coding	we	do
for	our	GraphQL	server.

Authenticating
Background:	Authentication

If	you’re	jumping	in	here,		git	checkout	2_0.2.0		(tag	2_0.2.0,	or	compare	2...3)

One	thing	that’s	done	outside	of	types	and	resolvers	is	creating	context,	which	is	an	object	provided	to	resolvers.	We
set	context	using	the		context		of		ApolloServer()	.	The		context		param	is	either	an	object	or,	more	commonly,	a
function	that	returns	an	object.	The	function	is	called	at	the	beginning	of	every	request.	The	most	common	use	of	the
	context		function	is	authenticating	the	user	making	the	request	and	adding	their	info	to	the	context.	Here’s	an
example	with	a	hard-coded	user:

	src/index.js	

const	server	=	new	ApolloServer({

		typeDefs:	gql`

				type	Query	{

						me:	User

						...

				}

				type	User	{

						firstName:	String

						lastName:	String

				}

				...

Chapter	11:	Server	Dev

227

http://localhost:4000/
https://github.com/GraphQLGuide/guide-api/tree/2_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/2_0.2.0...3_0.2.0
https://www.apollographql.com/docs/apollo-server/api/apollo-server#constructoroptions-apolloserver
https://github.com/GraphQLGuide/guide-api/compare/2_0.2.0...3_0.2.0

		`,

		resolvers:	{

				Query:	{

						me:	(_,	__,	context)	=>	context.user,

						...

				},

				...

		},

		context:	()	=>	{

				const	user	=	{

						firstName:	'John',

						lastName:	'Resig'

				}

				return	{	user	}

		}

})

Context	is	resolvers’	third	parameter.	For	the		me		resolver,	we	just	return	the		user		property.	We	can	try	it	out:

localhost:4000:		{	me	{	firstName	lastName	}	}	

Now	let’s	figure	out	the	real	user.	The	Guide	uses	JWTs	stored	in	LocalStorage,	so	authentication	is	done	by
cryptographically	verifying	the	token	provided	in	the	request’s	authorization	header.	We	get	the	request	as	an
argument	to	the	context	function:

import	{	getAuthIdFromJWT	}	from	'./util/auth'

const	server	=	new	ApolloServer({

		...

		context:	async	({	req	})	=>	{

				const	context	=	{}

				const	jwt	=	req.headers.authorization

				const	authId	=	await	getAuthIdFromJWT(jwt)

				console.log(authId)

				return	context

		}		

})

	getAuthIdFromJWT()		verifies	the	given	JWT	and	returns	what	we’re	calling	the	user’s	authId—a	unique	string
identifying	the	user	that	we	get	as	the	OpenID	subject	(verifiedToken.sub		below).	Here’s	the	function’s
implementation:

	src/util/auth.js	

Chapter	11:	Server	Dev

228

http://localhost:4000/
https://www.apollographql.com/docs/apollo-server/api/apollo-server#parameters
https://github.com/GraphQLGuide/guide-api/blob/3_0.2.0/src/util/auth.js

import	jwt	from	'jsonwebtoken'

import	jwks	from	'jwks-rsa'

import	{	promisify	}	from	'util'

const	verify	=	promisify(jwt.verify)

const	jwksClient	=	jwks({

		cache:	true,

		rateLimit:	true,

		jwksUri:	'https://graphql.auth0.com/.well-known/jwks.json'

})

const	getPublicKey	=	(header,	callback)	=>	{

		jwksClient.getSigningKey(header.kid,	(e,	key)	=>	{

				callback(e,	key.publicKey	||	key.rsaPublicKey)

		})

}

export	const	getAuthIdFromJWT	=	async	token	=>	{

		if	(!token)	{

				return

		}

		const	verifiedToken	=	await	verify(token,	getPublicKey,	{

				algorithms:	['RS256'],

				audience:	'https://api.graphql.guide',

				issuer:	'https://graphql.auth0.com/'

		})

		return	verifiedToken.sub

}

It	calls		verify()		from	the		jsonwebtoken		package.	In	order	to	verify,	it	needs	the	Guide’s	public	signing	key.	To
get	that,	we	use	the		jwks-rsa		package.

Now	if	we	send	a		{	hello	}		query	in	Playground,	we	see		undefined		in	the	server	logs.		authId		is	undefined
because		req.headers.authorization		is	undefined.	Which	means	that	Playground	isn’t	sending	an	authorization
header	with	our	query.	We	can	set	it	by	clicking	“HTTP	HEADERS”	in	the	bottom-left	to	open	the	JSON	headers
section.	We	want	to	set	the	authorization	header	to	our	JWT,	but	how	do	we	get	that?	It’s	produced	by	Auth0	during
the	login	process	and	saved	to	localStorage,	so	we	can	get	it	by	logging	in	at	graphql.guide/me,	opening	the	console,
and	entering:

localStorage.getItem('auth.accessToken')

And	it	prints	our	JWT!	It’s	a	long,	random-looking,	mostly	alphanumeric	string	with	some	periods,	dashes,	and
underscores.	We	can	copy	it	to	the	Playground	headers	section:

{	

		"authorization":	"your	JWT	here"

}

Chapter	11:	Server	Dev

229

https://github.com/auth0/node-jsonwebtoken/
https://github.com/auth0/node-jwks-rsa
https://graphql.guide/me

If	you	get	a		jwt	malformed		error,	you	likely	didn't	copy	the	whole	token.	Try	opening	the	Application	tab	in
Chrome	dev	tools,	selecting		auth.accessToken	,	and	copying	from	the	value	panel	at	the	bottom	of	the	window.

Make	note	of	your	authorization	header—you’ll	need	it	for	making	queries	in	other	sections	of	this	chapter.

Now	when	we	run	the	query,	we	see	our		authId		logged—something	like	this:

$	npm	run	dev

>	guide-api@0.1.0	dev	/guide-api

>	babel-watch	src/index.js

GraphQL	server	running	at	http://localhost:4000/

undefined

github|1615

The	format	is		github|N	,	where		N		is	our	primary	key	in	the	users	table	of	GitHub’s	database.	(It’s	an	incrementing
integer,	which	means	that	author	John	was	GitHub’s	1,615th	user!)

The	next	thing	that	should	happen	in	the	code	is	looking	up	the	user	in	our	database—something	like:

		context:	async	({	req	})	=>	{

				const	context	=	{}

				const	jwt	=	req.headers.authorization

				const	authId	=	await	getAuthIdFromJWT(jwt)

				context.user	=	await	db.collection('users').findOne({	authId	})

				return	context

		}

But	we	don’t	have	a	database	set	up	yet	(we’ll	set	it	up	in	the	next	section	and	add	users	in	Setting	user	context),	so
let’s	just	test	whether	the		authId		is	ours	(replacing	the	strings	with	your	own):

		context:	async	({	req	})	=>	{

				const	context	=	{}

				const	jwt	=	req.headers.authorization

				const	authId	=	await	getAuthIdFromJWT(jwt)

				if	(authId	===	'github|1615')	{

						context.user	=	{

Chapter	11:	Server	Dev

230

								firstName:	'John',

								lastName:	'Resig'

						}

				}

				return	context

		}

Now	if	we	do	a		me		query	with	our	authorization	header,	we	get	our	name:

But	if	we	remove	the	header,	we	get	null:

This	is	because	the		Query.me		resolver	returns		context.user	,	which	is	not	defined.

In	this	section	we	learned	how	to	put	our	JWT	in	the	authorization	header,	verify	it	on	the	server,	add	the	user	to
context,	and	access	the	context	in	resolvers.	In	the	next	section	we’ll	look	at	connecting	to	a	database	and	creating
users.

Data	sources

Chapter	11:	Server	Dev

231

Setting	up
File	structure
Creating	reviews

Setting	up

Background:	MongoDB,	JavaScript	classes

If	you’re	jumping	in	here,		git	checkout	3_0.2.0		(tag	3_0.2.0,	or	compare	3...4)

Our	reviews	are	currently	stored	in	a	JavaScript	array	variable.	There	are	a	few	problems	with	this	storage	method.
JavaScript	variables	are	part	of	the	Node	server	process,	which	means	that:

When	the	server	process	restarts	(for	instance	when	we	deploy),	our	reviews	get	erased.
When	the	server	machine	loses	power	(it’s	unlikely	but	possible	for	our	data	center	to	have	a	power	outage),	the
data	kept	in	RAM	(which	requires	electricity	to	remember	things)	is	lost.	Since	each	process’s	variables	are
stored	in	RAM,	our	reviews	get	erased.
When	we	have	multiple	server	processes	(common	in	the	age	of	Heroku,	when	it’s	easy	to	scale	up	small
containers),	the	user	will	see	different	reviews	based	on	which	container	each	request	is	routed	to.
When	we	we’re	using	serverless	and	don’t	have	a	long-running	server	process	(widely	introduced	by	AWS
Lambda	in	2014	and	now,	with	Now	2.0	and	Netlify	Functions,	becoming	the	standard	way	to	host	“servers”),
the	process	is	started	up	for	each	request,	so	every		reviews		query	would	return	just	the	single	item	we	started
out	with.

The	solution	to	all	of	these	problems	is	to	have	a	database	that	all	of	the	server	processes	can	talk	to—one	that	stores
data	on	a	drive	that	doesn’t	require	power	to	remember	things	(either	a	disk	drive	that	stores	data	on	magnetic	disks
or	a	solid-state	drive	that	stores	data	in	flash	memory).

We’ll	be	using	MongoDB	because	it’s	the	most	popular	database	among	Node	developers	and	because	it’s	simple	to
use.	The	object-based	API	is	easy	to	understand,	and	we	don’t	need	to	create	a	schema	or	do	migrations.	(Of	course,
just	as	a	schema	is	useful	in	GraphQL,	it’s	useful	for	databases,	and	we	could	enforce	a	schema	for	our	MongoDB
database,	for	example	with	the	Mongoose	ORM,	but	we’ll	be	using	the	simplest	model	layer	possible.)	For	an
introduction	to	MongoDB,	check	out	the	MongoDB	section	of	the	Background	chapter.

There	are	two	main	ways	to	talk	to	a	database	from	our	GraphQL	resolvers:	data	sources	and	Prisma.	We	generally
recommend	Prisma	(a	next-generation	ORM)	for	ease	of	use,	and	we’ll	learn	how	to	use	it	in	a	later	section.	For	now,
we’ll	use	a	MongoDB	data	source,	for	the	same	reasons	we	used	Create	React	App	instead	of	Next.js	or	Gatsby	in
the	React	chapter—data	sources	are	more	basic	and	familiar.

Data	sources	are	classes	that	interact	with	a	source	of	data	(a	database	or	a	service).	They	often	take	care	of	some
amount	of	batching	queries	and	caching	responses.	We’ll	go	into	them	more	deeply	in	the	More	data	sources	section.

Usually	there	are	two	classes:	a	superclass	that	we	import	from	a	library	that	matches	our	type	of	database,	and	a
subclass	that	we	implement.	There	are	superclass	libraries	for	MongoDB,	SQL,	and	REST,	and	we’ll	also	learn	how	to
create	our	own.	The	MongoDB	library	is		apollo-datasource-mongodb	,	and	its	superclass	is	called		MongoDataSource	.
Let’s	use	it	to	create	a	data	source	for	a		'reviews'		MongoDB	collection:

	src/data-sources/Reviews.js	

import	{	MongoDataSource	}	from	'apollo-datasource-mongodb'

export	default	class	Reviews	extends	MongoDataSource	{

		all()	{

				return	this.collection.find().toArray()

		}

}

Chapter	11:	Server	Dev

232

https://github.com/GraphQLGuide/guide-api/tree/3_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/3_0.2.0...4_0.2.0
https://mongoosejs.com
https://www.apollographql.com/docs/apollo-server/features/data-sources
https://www.prisma.io/
https://github.com/GraphQLGuide/apollo-datasource-mongodb
https://github.com/GraphQLGuide/guide-api/blob/4_0.2.0/src/data-sources/Reviews.js

We	start	with	a	single	method		all()		that	fetches	all	reviews	from	the	collection.	Where	does		this.collection		come
from,	you	might	ask?	It’s	set	in	the	constructor	(defined	in		MongoDataSource),	which	gets	the	collection	as	an
argument:

const	reviews	=	new	Reviews(db.collection('reviews'))

But	in	order	to	do	that,	we	need	to	set	up	the	database!	We	can	install	and	start	MongoDB	on	Windows	with	these
steps	or	with	Homebrew	on	a	Mac:

$	brew	tap	mongodb/brew

$	brew	install	mongodb-community

$	brew	services	start	mongodb-community

The	database	is	now	running	on	our	computer.	We	connect	to	it	with	the		mongodb		package:

	src/db.js	

import	{	MongoClient	}	from	'mongodb'

export	let	db

const	URL	=	'mongodb://localhost:27017/guide'

const	client	=	new	MongoClient(URL,	{	useNewUrlParser:	true	})

client.connect(e	=>	{

		if	(e)	{

				console.error(`Failed	to	connect	to	MongoDB	at	${URL}`,	e)

				return

		}

		db	=	client.db()

})

	'mongodb://localhost:27017/'		is	the	default	URL	of	the	MongoDB	server	running	on	our	computer,	and		'guide'		is
the	name	of	our	database.	Now	we	can	import		db		and	use	it	to	create	our	data	source.	Data	sources	are	created	in	a
function	that	we	pass	to		ApolloServer	:

	src/index.js	

import	Reviews	from	'./data-sources/Reviews'

import	{	db	}	from	'./db'

const	server	=	new	ApolloServer({

		typeDefs:	...

		resolvers:	...

		dataSources:	()	=>	({

				reviews:	new	Reviews(db.collection('reviews'))

		}),

		context:	...

})

Like	the		context		function,	the		dataSources		function	is	run	for	each	request,	so	each	request	gets	a	new	instance	of
each	data	source.		ApolloServer		adds	data	sources	to	the	context	so	that	we	can	access	them	in	our	resolvers	like
this:

const	server	=	new	ApolloServer({

		typeDefs:	...

		resolvers:	{

				Query:	{

						me:	(_,	__,	context)	=>	context.user,

						hello:	()	=>	'ɍ ɏ Ɏ ',

						reviews:	(_,	__,	{	dataSources	})	=>	dataSources.reviews.all()

Chapter	11:	Server	Dev

233

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-windows/#install-mdb-edition
https://brew.sh/
http://mongodb.github.io/node-mongodb-native/
https://github.com/GraphQLGuide/guide-api/blob/4_0.2.0/src/db.js
https://github.com/GraphQLGuide/guide-api/compare/3_0.2.0...4_0.2.0

				},

				...

		},

		dataSources:	()	=>	({

				reviews:	new	Reviews(db.collection('reviews'))

		}),

		context:	...

})

We	always	get	context	as	the	third	argument	to	our	resolvers,	and	here	in	the		Query.reviews		resolver	we’re
destructuring	context’s		dataSources		property.	Then	we	get	the	instance	of	our		Reviews		data	source,
	dataSources.reviews	,	and	call	its		.all()		method.	Now	when	we	do	our	reviews	query	again,	we	get	an	empty	array,
since	nothing	is	yet	in	the		reviews		collection:

File	structure

If	you’re	jumping	in	here,		git	checkout	4_0.2.0		(tag	4_0.2.0,	or	compare	4...5)

Our		src/index.js		file	is	getting	long,	and	continuing	to	put	most	of	our	code	in	one	file	would	get	ridiculous	 .	Let’s
really	simplify	this	file	and	get	our		ApolloServer		creation	down	to	just:

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context

})

with	each	parameter	imported	from	other	files.	There’s	no	one	right	way	to	structure	the	other	files,	but	our	favorite	is:

directories	for	the	schema,	resolvers,	and	data	sources
one	file	for	each	major	type,	for	example:

	schema/Review.graphql		for	the		Review		type	schema
	resolvers/Review.js		for	the	resolvers	associated	with	the		Review		type
	data-sources/Reviews.js		for	the		reviews		collection	data	source

With	this	structure,	our		src/		looks	like:

.

├──	context.js

├──	data-sources

│			├──	Reviews.js

Chapter	11:	Server	Dev

234

https://github.com/GraphQLGuide/guide-api/tree/4_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/4_0.2.0...5_0.2.0

│			└──	index.js

├──	db.js

├──	index.js

├──	resolvers

│			├──	Review.js

│			├──	User.js

│			└──	index.js

├──	schema

│			├──	Review.graphql

│			├──	User.graphql

│			└──	schema.graphql

└──	util

				└──	auth.js

Some	notes	on	the	above:

We	haven’t	yet	made	a	data	source	for	the	users	collection.
We	have	context	in	a	single	file		context.js	,	but	if	that	ever	got	too	long,	we	could	make	a		context/		directory
and	split	it	into	multiple	files.
We	have		index.js		files	so	that	we	can	import	the	directory	(for	example		import	resolvers	from	'./resolvers'	
imports	from		'./resolvers/index.js').
We	don’t	have	an		index.js		in		schema/		because	they’re		.graphql		files,	and	you	can’t	import	a	directory	with
GraphQL	imports.

For	GraphQL	imports,	we’re	using	a	babel	plugin	called		babel-plugin-import-graphql		which	replaces	our	imported
	.graphql		files	with	schema	objects	(the	same	ones	that	the		gql		template	string	tag	creates).	We	could	have	instead
done	JS	files	with	template	strings	and	given	an	array	of	them	as	our		typeDefs		parameter,	which	would	look	like	this:

//	schema/Review.js

import	gql	from	'graphql-tag'

export	default	gql`

type	Review	{

		text:	String!

		stars:	Int

		fullReview:	String!		

}

`

//	schema/User.js

import	gql	from	'graphql-tag'

export	default	gql`

type	User	{

		firstName:	String

		lastName:	String

}

`

//	schema/index.js

import	reviewSchema	from	'./Review.js'

import	userSchema	from	'./User.js'

export	default	[reviewSchema,	userSchema]

//	index.js

import	typeDefs	from	'./schema'

const	server	=	new	ApolloServer({

		typeDefs,

		...

})

Instead,	we	have:

	src/schema/schema.graphql	

Chapter	11:	Server	Dev

235

https://github.com/detrohutt/babel-plugin-import-graphql
https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/schema/schema.graphql

type	Query	{

		hello:	String!

}

#	import	Review	first

#import	'Review.graphql'

#import	'User.graphql'

And	the	babel	plugin	makes	the		#import		statements	work,	bringing	in	these	files:

	src/schema/Review.graphql	

type	Review	{

		text:	String!

		stars:	Int

		fullReview:	String!

}

extend	type	Query	{

		reviews:	[Review!]!

}

type	Mutation	{

		createReview(review:	CreateReviewInput!):	Review

}

input	CreateReviewInput	{

		text:	String!

		stars:	Int

}

	src/schema/User.graphql	

type	User	{

		firstName:	String

		lastName:	String

}

extend	type	Query	{

		me:	User

}

	extend	type	Query		adds	fields	to	the	existing		Query		type	(which	we	defined	first	in		schema.graphql).
	Review.graphql		is	the	first	to	define		Mutation	,	so	it	doesn’t	use		extend	.	And	we	import	it	first	so	that	future	files	we
import	below	can	all	do		extend	type	Mutation	.	(And	we	include	the		#	import	Review	first		comment	in	the	file	so
that	others—or	our	future	selves	 —won’t	change	the	order.)

Thanks	to	our	babel	plugin,	our		schema.graphql		can	be	imported	like	this:

import	typeDefs	from	'./schema/schema.graphql'

In	our		resolvers/		directory	we	have		Review.js		and		User.js	,	which	just	have	the	resolvers	related	to	the		Review	
and		User		types,	respectively:

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	(_,	__,	{	dataSources	})	=>	dataSources.reviews.all()

		},

		Review:	{

				fullReview:	review	=>

						`Someone	on	the	internet	gave	${review.stars}	stars,	saying:	"${

								review.text

						}"`

Chapter	11:	Server	Dev

236

https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/schema/Review.graphql
https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/schema/User.graphql
https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/resolvers/Review.js

		},

		Mutation:	{

				createReview:	(_,	{	review	})	=>	{

						reviews.push(review)

						return	review

				}

		}

}

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	(_,	__,	context)	=>	context.user

		}

}

We	combine	them	in		index.js	:

	src/resolvers/index.js	

const	resolvers	=	{

		Query:	{

				hello:	()	=>	'ɍ ɏ Ɏ '

		}

}

import	Review	from	'./Review'

import	User	from	'./User'

export	default	[resolvers,	Review,	User]

We	can	now	import	all	resolvers	with:

import	resolvers	from	'./resolvers'

Next	up	is	data	sources!	We	already	have		src/data-sources/Review.js	,	so	all	we	need	is	an		index.js		that	will
combine	future	data	sources	with	our		Review.js		and	export	the	function	that	creates	new	instances:

	src/data-sources/index.js	

import	Reviews	from	'./Reviews'

import	{	db	}	from	'../db'

export	default	()	=>	({

		reviews:	new	Reviews(db.collection('reviews'))

})

The	last	thing	we	want	to	move	out	of		src/index.js		is	our	context	function.	It’s	small	enough	that	we	can	put	it	in	a
single	file:

	src/context.js	

import	{	getAuthIdFromJWT	}	from	'./util/auth'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

		const	authId	=	await	getAuthIdFromJWT(jwt)

		if	(authId	===	'github|1615')	{

				context.user	=	{

						firstName:	'John',

						lastName:	'Resig'

				}

Chapter	11:	Server	Dev

237

https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/resolvers/User.js
https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/resolvers/index.js
https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/data-sources/index.js
https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/context.js

		}

		return	context

}

This	brings	our	entire		src/index.js		to	just:

import	{	ApolloServer	}	from	'apollo-server'

import	typeDefs	from	'./schema/schema.graphql'

import	resolvers	from	'./resolvers'

import	dataSources	from	'./data-sources'

import	context	from	'./context'

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context

})

server

		.listen({	port:	4000	})

		.then(({	url	})	=>	console.log(`GraphQL	server	running	at	${url}`))

So	clean!	

Creating	reviews

If	you’re	jumping	in	here,		git	checkout	5_0.2.0		(tag	5_0.2.0,	or	compare	5...6)

In	Setting	up,	we	updated	our		reviews		query	to	fetch	from	MongoDB,	but	our	reviews	database	collection	is	empty!
So	let’s	get	reviews	into	the	database.	API	clients	usually	find	it	helpful	if	we	give	them	an	ID	for	objects	we	send
them,	so	let’s	add	one	to	the	schema:

	src/schema/Review.graphql	

type	Review	{

		id:	ID!

		text:	String!

		stars:	Int

		fullReview:	String!

}

Let’s	update	our		createReview		mutation	to	talk	to	the	database:

	src/resolvers/Review.js	

export	default	{

		...

		Mutation:	{

				createReview:	(_,	{	review	},	{	dataSources	})	=>

						dataSources.reviews.create(review)

		}

}

It	just	calls	a	method	on	our	data	source,	which	we	need	to	define:

	src/data-sources/Reviews.js	

export	default	class	Reviews	extends	MongoDataSource	{

		all()	{

				return	this.collection.find().toArray()

		}

		create(review)	{

Chapter	11:	Server	Dev

238

https://github.com/GraphQLGuide/guide-api/blob/5_0.2.0/src/index.js
https://github.com/GraphQLGuide/guide-api/tree/5_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/5_0.2.0...6_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/5_0.2.0...6_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/5_0.2.0...6_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/5_0.2.0...6_0.2.0

				this.collection.insertOne(review)

				return	review

		}

}

	createReview		resolves	to	a		Review	,	so	we	need	to	return		review	.	And	it	needs	to	have	an	ID.	MongoDB’s
	insertOne()		synchronously	adds	a	generated		_id		to	the	argument	we	give	it,	so	when	we		return	review	,
	review._id		is	filled	in.	We	return	before	the	MongoDB	node	library	talks	to	the	database	in	order	to	send	a	response
to	the	client	as	quickly	as	possible.	If	we	wanted	to	wait	until	after	we	knew	that	the	database	operation	had	completed
successfully,	we	could		await	:

		async	create(review)	{

				await	this.collection.insertOne(review)

				return	review

		}

In	this	case,	if	there	were	a	problem	with	the	database	insertion,		insertOne()		would	throw	an	error,	which	Apollo
Server	would	format	and	send	to	the	client.	Our	method	is	now		async	,	which	means	it	returns	a	Promise,	which
means	our		createReview		resolver	returns	a	Promise.	Apollo	Server	waits	for	Promises	to	resolve	before	continuing
the	GraphQL	execution	process.

While	it’s	good	that	in	either	case,	the		_id		property	is	added	to	our		review		object,		_id		doesn’t	match	with	our
schema	(the	schema	says	the		Review		type	has	a	field	named		id	,	without	an	underscore).	If	we	create	a	review	and
include		id		in	the	selection	set:

mutation	{

		createReview(review:	{	text:	"Passing",	stars:	3	})	{

				id

				text

				stars

		}

}

then	we	get	this	error:

Apollo	Server	is	trying	to	resolve	the		id		field	in	our	selection	set,	looking	at	the	review	object	we	return	from	the
	createReview		resolver,	and	not	finding	an		id		property	on	that	object.	When	it	can’t	find	a	property	or		Review		field
resolver,	it	normally	returns		null	.	However,	the		Review		type	in	our	schema	has	an		!		in	the	type	of		id		(id:
ID!),	so	it	is	non-nullable.	Hence	the	error	text:		"Cannot	return	null	for	non-nullable	field	Review.id."	

We	can	fix	this	by	adding	a		Review.id		resolver:

	src/resolvers/Review.js	

export	default	{

		...

Chapter	11:	Server	Dev

239

http://mongodb.github.io/node-mongodb-native/3.2/api/Collection.html#insertOne
https://github.com/GraphQLGuide/guide-api/compare/5_0.2.0...6_0.2.0

		Review:	{

				id:	review	=>	review._id,

				fullReview:	review	=>

						`Someone	on	the	internet	gave	${review.stars}	stars,	saying:	"${

								review.text

						}"`

		},

		...

}

	review._id		is	an	object—an	instance	of		ObjectId	,	MongoDB’s	default	ID	type.		Review.id		is	supposed	to	resolve	to
the	GraphQL		ID		scalar	type,	which	is	serialized	as	a	string.	This	might	make	us	think	that	we	should	be	getting	an
error.	But	if	we	try	our	Playground	mutation	again,	it’s	successful.	The	reason	is	that	because	the	schema	says	the
	id		resolver	should	return	an		ID	,	Apollo	Server	knows	to	call		.toString()		on	the	object	we	return.

We	can	now	see	the	list	of	reviews	in	the	database—one	for	each	time	we	ran	the		createReview		mutation:

{	

		reviews	{

				id

				text

				stars

				fullReview

		}

}

Custom	scalars

Chapter	11:	Server	Dev

240

http://mongodb.github.io/node-mongodb-native/3.2/api/ObjectId.html

If	you’re	jumping	in	here,		git	checkout	6_0.2.0		(tag	6_0.2.0,	or	compare	6...7)

In	the	last	section	we	mentioned	that	the		ID		scalar	is	serialized	like	a	string,	but	what	does	that	process	look	like,
and	how	do	we	make	our	own	scalars?	The	only	built-in	scalars	are		Int	,		Float	,		String	,		Boolean	,	and		ID	.
Another	scalar	type	that	most	apps	use	is	a	date.	For	example,	it	would	be	nice	to	have	a		Review.createdAt	.	We
could	make	it	an		Int	,	but	then	is	it	seconds	or	milliseconds	since	the	Unix	epoch)?	Or	it	could	be	a		String	,	but
there	are	a	lot	of	string	date	formats	out	there.	And	both	ways	are	missing	validation	(testing	whether	the	string	is	a
valid	date	string)	and	the	improved	understanding	that	comes	from	being	able	to	know,	looking	at	the	schema,	which
fields	are	meant	to	be	dates.	So	let’s	make	our	own		Date		scalar.	We	can	add	it	to	our	schema:

	src/schema/schema.graphql	

scalar	Date

type	Query	{

		hello:	String!

		isoString(date:	Date!):	String!

}

#import	'Review.graphql'

#import	'User.graphql'

	src/schema/Review.graphql	

type	Review	{

		id:	ID!

		text:	String!

		stars:	Int

		fullReview:	String!

		createdAt:	Date!

		updatedAt:	Date!

}

...

First	we	declare	the	new	scalar	type	(scalar	Date),	and	then	we	use	it	for	a	new		isoString		query	as	well	as
	createdAt		and		updatedAt		fields	on		Review	.	We	make	them	non-nullable	because	all	Review	objects	will	have	them.

We	can	use	the	word		Date		for	our	type	because	we	don’t	have	other	types	of	dates	or	times	in	our	app.	If	we
also	had	a		Date		that	had	no	time	component,	like	a	birthday,	or	a		Time		that	had	no	date	component,	like
14:00	(2	p.m.),	we	could	call	our	new	scalar		DateTime	.

	isoString		takes	a		Date		as	an	argument	and	returns	the	date	formatted	as	a	string	in	the	ISO	format:

	src/resolvers/index.js	

const	resolvers	=	{

		Query:	{

				hello:	()	=>	'ɍ ɏ Ɏ ',

				isoString:	(_,	{	date	})	=>	date.toISOString()

		}

}

Next	we	add	to	our	resolvers	a		GraphQLScalarType	,	which	tells	Apollo	Server	how	to	handle	a	custom	scalar.	It	will
look	like	this:

	src/resolvers/Date.js	

import	{	GraphQLScalarType	}	from	'graphql'

export	default	{

		Date:	new	GraphQLScalarType({

				name:

Chapter	11:	Server	Dev

241

https://github.com/GraphQLGuide/guide-api/tree/6_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0
https://en.wikipedia.org/wiki/Epoch_(computing\
https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0
https://en.wikipedia.org/wiki/ISO_8601
https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0
https://github.com/GraphQLGuide/guide-api/blob/7_0.2.0/src/resolvers/Date.js

				description:

				parseValue(value)	{}

				parseLiteral(ast)	{}

				serialize(date)	{}

		})

}

	GraphQLScalarType		takes	five	parameters:

	name		matches	the	scalar	name	we	added	to	the	schema,	so		'Date'	
	description		is	shown	in	the	schema	section	of	GraphiQL	and	Playground.	It	says	what	the	scalar	represents
and	how	it	appears	in	the	JSON	response	from	a	server.	The	built-in	description	for		ID	,	for	instance,	is:

The		ID		scalar	type	represents	a	unique	identifier,	often	used	to	refetch	an	object	or	as	a	key	for	a	cache.	The
ID	type	appears	in	a	JSON	response	as	a	String;	however,	it	is	not	intended	to	be	human-readable.	When
expected	as	an	input	type,	any	string	(such	as		"4")	or	integer	(such	as		4)	input	value	will	be	accepted	as	an
ID.

	parseValue(value)		is	a	function	called	when	the	server	receives	a	query	variable	for	a	Date	argument.	The
variable’s	value	is	passed	to		parseValue()	,	and	the	function	should	return	the	value	in	our	desired	format—in	this
case,	a	JavaScript	Date	object.	For	example,	if	the	client	sends	this	query:

query	ISOString($date:	Date!)	{

		isoString(date:	$date)

}

with	this	as	the	variables	JSON:

{

		"date":	1442188800000

}

then		parseValue		is	passed	the	integer		1442188800000		and	should	return	a	JS	Date	object,	which	Apollo	Server	will
provide	to	our	resolver,	which	calls		.toISOString()		on	the	JS	Date	object:

		isoString:	(_,	{	date	})	=>	date.toISOString()

	parseLiteral(ast)		is	called	when	the	server	receives	a	query	with	a	literal	argument—meaning	the	argument	is
written	in	the	query	document	itself	instead	of	being	provided	separately	in	JSON	(as	variables	are).		ast		stands
for	abstract	syntax	tree,	which	is	an	object	that	Apollo	Server	uses	to	parse	the	query	document.		ast.value		has
the	literal	value,	and	is	always	a	string.	Similar	to		parseValue()	,		parseLiteral()		should	return	the	server’s
internal	representation	of	the	scalar	type.	If	the	client	sends	this	query	document:

{

		isoString(date:	1442188800000)

}

Chapter	11:	Server	Dev

242

Then		parseLiteral(ast)		will	be	called,	and		ast.value		will	be		"1442188800000"	.

	serialize(date)		is	called	when	the	server	is	formatting	a	JSON	response	for	the	client.	A	resolver	returns	a	JS
Date	object,	then	Apollo	Server	calls		serialize()		with	that	object,	and		serialize()		returns	the	date	in	a	format
that	can	be	put	into	the	JSON	response—which	in	our	implementation	of	the		Date		scalar	is	an	integer.	For
example,	if	the		Review.createdAt		resolver	returns	a	JS	Date,	we	would	see	an	integer	in	the	response:

If	you're	following	along,	this	query	won't	work	until	we	fill	in		Date.js		and	add	it	to		src/resolvers/index.js	.

Here’s	a	basic	implementation	of	the	above:

import	{	GraphQLScalarType	}	from	'graphql'

export	default	{

		Date:	new	GraphQLScalarType({

				name:	'Date',

				description:	`The	\`Date\`	scalar	type	represents	a	single	moment	in	time.	

				It	is	serialized	as	an	integer,	equal	to	the	number	of	milliseconds	since	

				the	Unix	epoch.`,

				parseValue:	value	=>	new	Date(value),

				parseLiteral:	ast	=>	new	Date(parseInt(ast.value)),

				serialize:	date	=>	date.getTime()

		})

}

	parseValue()		takes	the	integer	and	creates	a		Date	.		parseLiteral()		gets	the		ast.value		string,	converts	it	into	an
integer,	and	creates	a		Date	.		serialize()		takes	the	date	and	returns	the	milliseconds	since	epoch.

One	important	aspect	of	defining	a	custom	scalar	that	we’re	missing	is	validation.	If	we	check	the	values	we’re	getting
and	throw	errors	with	descriptive	messages,	it	will	help	people	using	our	API.	Let’s	do	that:

	src/resolvers/Date.js	

import	{	GraphQLScalarType	}	from	'graphql'

import	{	Kind	}	from	'graphql/language'

const	isValid	=	date	=>	!isNaN(date.getTime())

export	default	{

		Date:	new	GraphQLScalarType({

				name:	'Date',

				description:

						`The	\`Date\`	scalar	type	represents	a	single	moment	in	time.	It	is	serialized	as	an	integer,	equal	to	th

e	number	of	milliseconds	since	the	Unix	epoch.',

Chapter	11:	Server	Dev

243

https://github.com/GraphQLGuide/guide-api/blob/7_0.2.0/src/resolvers/Date.js

				parseValue(value)	{

						if	(!Number.isInteger(value))	{

								throw	new	Error('Date	values	must	be	integers')

						}

						const	date	=	new	Date(value)

						if	(!isValid(date))	{

								throw	new	Error('Invalid	Date	value')

						}

						return	date

				},

				parseLiteral(ast)	{

						if	(ast.kind	!==	Kind.INT)	{

								throw	new	Error('Date	literals	must	be	integers')

						}

						const	date	=	new	Date(parseInt(ast.value))

						if	(!isValid)	{

								throw	new	Error('Invalid	Date	literal')

						}

						return	date

				},

				serialize(date)	{

						if	(!(date	instanceof	Date))	{

								throw	new	Error(

										'Resolvers	for	Date	scalars	must	return	JavaScript	Date	objects'

)

						}

						if	(!isValid(date))	{

								throw	new	Error('Invalid	Date	scalar')

						}

						return	date.getTime()

				}

		})

}

In		parseValue()		and		parseLiteral()	,	we	check	whether	the	client	sent	an	integer,	then	we	create	a	JS	Date	and
check	whether	it’s	valid.	In		serialize()		we	check	that	the	value	returned	from	a	resolver	is	a	JS	Date	object,	then	we
check	if	it’s	a	valid	date,	and	finally	we	return	the	milliseconds	since	epoch.

We	add	this	file	to	our	resolvers	in		resolvers/index.js		by	importing	and	adding	to	our		resolversByType		array:

	src/resolvers/index.js	

...

import	Review	from	'./Review'

import	User	from	'./User'

import	Date	from	'./Date'

export	default	[resolvers,	Review,	User,	Date]

We	saw	our		isoString		query	working	above,	but	now	if	we	make	a	mistake,	we	get	a	helpful	error	message:

Chapter	11:	Server	Dev

244

https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0

The	last	part	of	our	schema	change	for	which	we	have	to	implement	resolvers	is		Review	’s		createdAt		and
	updatedAt	.	In	MongoDB,	the	creation	time	is	included	in	the	default	ID	format,	ObjectId.	The	first	4	bytes	are	the
seconds	since	Unix	epoch,	so	we	can	get	the	creation	time	from	that.	(And	since	it’s	the	first	4	bytes,	we	can	also	sort
by	an	ObjectId	to	order	by	most/least	recently	created.)	The		mongodb		node	library	provides	a	method
	ObjectId.getTimestamp()		that	extracts	the	date	for	us:

	src/resolvers/Review.js	

export	default	{

		Query:	...

		Review:	{

				...

				createdAt:	review	=>	review._id.getTimestamp()

		},

		Mutation:	...

}

	updatedAt		is	a	field	that	we’ll	have	to	store	in	the	database	when	reviews	are	created	and	update	when	reviews	are
modified.	We	don’t	have	a	way	of	modifying	reviews	yet,	so	we’ll	just	add	a	line	to	our	creation	method:

	src/data-sources/Reviews.js	

import	{	MongoDataSource	}	from	'apollo-datasource-mongodb'

export	default	class	Reviews	extends	MongoDataSource	{

		...

		create(review)	{

				review.updatedAt	=	new	Date()

				this.collection.insertOne(review)

				return	review

		}

}

Chapter	11:	Server	Dev

245

https://docs.mongodb.com/manual/reference/method/ObjectId/
https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0

Now	we	can	include		updatedAt		in	our		reviews		query,	but	we	get	the	error		Cannot	return	null	for	non-nullable
field	Review.updatedAt	:

Apollo	Server	is	telling	us	that	it	can’t	return		null		for		Review.updatedAt		to	the	client	because	the	schema	says	it’s	a
non-nullable	field.	Why	is	it	trying	to	return		null		for		Review.updatedAt	?	It’s	not—our	resolver	is.	Our		reviews	
resolver	is	returning	reviews	fetched	from	the	database,	but	none	of	them	have	an		updatedAt		property	because	they
were	inserted	before	we	updated	our		Reviews.create()		data	source	method.	We	could	fix	our	reviews	in	the	database
by	adding	an		updatedAt		field,	but	let’s	just	delete	them	and	re-create.	If	you’d	like	a	GUI	(Graphical	User	Interface,
i.e.,	a	program	that	runs	in	its	own	window	instead	of	in	the	command	line)	for	interacting	with	MongoDB,	we
recommend	MongoDB	Compass.	Here’s	how	to	delete	all	of	our	reviews	using	the		mongo		command-line	shell:

$	mongo

MongoDB	shell	version	v4.0.3

connecting	to:	mongodb://127.0.0.1:27017

...

>	use	guide

switched	to	db	guide

>	db.reviews.find({})

{	"_id"	:	ObjectId("5cdfb1946df8548efb438535"),	"text"	:	"Passing",	"stars"	:	3	}

{	"_id"	:	ObjectId("5cdfb1e4a1cf288f4d86dced"),	"text"	:	"Passing",	"stars"	:	3	}

{	"_id"	:	ObjectId("5cdfb28e48435b90119bd2c6"),	"text"	:	"Passing",	"stars"	:	3	}

>	db.reviews.remove({})

WriteResult({	"nRemoved"	:	3	})

>	db.reviews.find({})

>	exit

bye

Our	second	call	to		db.reviews.find({})		doesn’t	show	results	because	the	collection	is	now	empty.	And	when	we	do
our		reviews		query,	we	get	back	an	empty	array.	Now	if	we	use	Playground	to	send	a		createReview		mutation,	then
we	can	do	a		reviews		query	with	the		createdAt		and		updatedAt		fields:

The	last	three	digits	of		createdAt		will	always	be		000		because	the	API	returns	milliseconds	since	Epoch,	and	all
that’s	stored	in	the	ObjectId	is	seconds	since	Epoch.

Chapter	11:	Server	Dev

246

https://www.mongodb.com/products/compass

An	alternative	to	clearing	the	database	collection	would	have	been	to	add	a	resolver	for		Review.updatedAt		that	returns
	Review.createdAt		when	there’s	no		updatedAt		property	on	the	review	object.	In	order	to	call	another	resolver,	we’d
need	to	name	the	resolver’s	object	and	move		export	default		to	the	end:

	src/resolvers/Review.js	

const	resolvers	=	{

		Query:	{

				reviews:	...

		},

		Review:	{

				id:	...

				fullReview:	...

				createdAt:	review	=>	review._id.getTimestamp(),

				updatedAt:	review	=>	review.updatedAt	||	resolvers.Review.createdAt(review)

		},

		Mutation:	{

				createReview:	...

		}

}

export	default	resolvers

Then	we	could	reference	another	resolver	function	(resolvers.Review.createdAt(review)).

In	this	section	we	created	a	new		Date		scalar	type,	added		Query.isoString	,	which	has	a		Date		argument,	and
	Review.createdAt		and		Review.updatedAt	,	which	resolve	to		Date	s.	We’ll	continue	to	use	the		Date		type	in	the	rest	of
our	app,	for	instance	for		User.createdAt/updatedAt		in	the	next	section.

Creating	users
Protecting	with	secret	key
Setting	user	context
Linking	users	to	reviews

Currently	our		User		type	just	has	two	fields	(firstName		and		lastName),	and	we	aren’t	storing	users	in	the	database.
If	we	wanted	to	continue	without	storing	users	in	the	database,	we	could	fetch	any	further	information	we	want,	like
email	address	or	GitHub	username,	from	Auth0	or	GitHub	whenever	we	needed	it.	However,	this	would	be	a	little
more	complicated	than	querying	our	database,	introduce	latency	(it	takes	longer	for	our	server	to	talk	to	their	servers
than	to	query	our	database),	and	introduce	another	point	of	failure	(if	their	services	went	down	or	there	was	a	network
failure	between	us	and	them).	Furthermore,	we’re	going	to	have	to	store	some	new	user	data	(for	instance,	which
sections	they’ve	read,	or	which	reviews	they’ve	favorited),	so	we	might	as	well	have	other	user	data	we	need	stored
along	with	it.	In	the	first	part	of	this	section,	we’ll	create	user	documents	in	a	new	users	Mongo	collection.	In	the
second	part,	we’ll	query	the	collection	to	set	the	user	context	for	resolvers.

Protecting	with	secret	key

If	you’re	jumping	in	here,		git	checkout	7_0.2.0		(tag	7_0.2.0,	or	compare	7...8)

There	are	two	ways	we	could	create	our	user	doc.	One	is,	in	our	context	function,	checking	if	the	user	we	decode	from
the	JWT	exists	in	the	database,	and	if	they	don’t,	fetching	their	data	from	Auth0	and	GitHub	and	saving	it	to	the
database.	The	other	method	is	to	use	an	Auth0	hook—a	function	we	write	that	runs	on	a	certain	trigger.	The	“Post
User	Registration”	hook	runs	whenever	a	user	first	uses	their	GitHub	account	to	log	in.	Inside	of	our	hook	function,	we
can	put	together	the	user	data	we	want	and	send	it	to	the	server	in	a	mutation.	The	Guide	hook	looks	something	like
this:

const	request	=	require('graphql-request').request

const	pick	=	require('lodash').pick

Chapter	11:	Server	Dev

247

https://github.com/GraphQLGuide/guide-api/compare/6_0.2.0...7_0.2.0
https://github.com/GraphQLGuide/guide-api/tree/7_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0

const	query	=	`

mutation	createUserFromHook($user:	CreateUserInput!,	$secretKey:	String!)	{

		createUser(user:	$user,	secretKey:	$secretKey)	{

				id

		}

}`

module.exports	=	function	(user,	context,	cb)	{

		const	secretKey	=	context.webtask.data.secretKey

		const	input	=	pick(user,	'username',	'email')

		input.authId	=	user.id

		const	variables	=	{

				user:	input,

				secretKey

		}

		request('https://api.graphql.guide/graphql',	query,	variables).then(data	=>	cb(null,	data))

};

The	exported	function	is	given	data	about	the	user,	and	then	sends	a		createUser		mutation	to	the	Guide	server.	The
mutation	takes	as	arguments	both	the	user	data	and	a		secretKey	—a	secret	string	that	the	server	verifies	before
running	the	mutation,	so	that	no	one	but	the	hook	can	create	users.

When	we	want	to	protect	a	query,	mutation,	or	field	from	being	accessed	by	anyone,	normally	we	use	a	JWT	in	the
authorization	header.	We	could	create	a	JWT	for	this	purpose,	but	it’s	easier	to	generate	a	random	string	(i.e.	key).
We	could	put	the	key	in	the	authorization	header	like	is	usually	done	for	API	keys,	which	would	look	like	this:

	src/context.js	

import	{	getAuthIdFromJWT	}	from	'./util/auth'

const	API_KEYS	=	['alohomora',	'speak-friend']

export	default	async	({	req	})	=>	{

		const	context	=	{}

		if	(API_KEYS.includes(req.headers.authorization))	{

				context.apiUser	=	true

		}	else	{

				const	jwt	=	req.headers.authorization

				const	authId	=	await	getAuthIdFromJWT(jwt)

				if	(authId	===	'github|1615')	{

						context.user	=	{

								firstName:	'John',

								lastName:	'Resig'

						}

				}

		}

		return	context

}

We	add	an	if	statement	and	set		context.apiUser		to		true	,	which	we	can	check	inside	our	resolvers.

However,	since	we	only	need	the	key	for	this	one	mutation,	we’ll	add	a		secretKey		argument	to	it.	As	always,	we	start
with	the	schema:

	src/schema/User.graphql	

type	User	{

		firstName:	String

		lastName:	String

}

extend	type	Query	{

		me:	User

}

Chapter	11:	Server	Dev

248

https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0

extend	type	Mutation	{

		createUser(user:	CreateUserInput!,	secretKey:	String!):	User

}

input	CreateUserInput	{

		firstName:	String!

		lastName:	String!

		username:	String!

		email:	String!

		authId:	String!

}

We’re	extending	the		Mutation		type	that	first	appears	in		src/schema/Review.graphql	,	and	we	follow	the	standard
practice	of	our	creation	mutation	resolving	to	the	type	it	creates,		User	.	And	we	create	a	new	input	type	with	the	user
fields	we	want.	Next,	we	implement	the		createUser		resolver:

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	(_,	__,	context)	=>	context.user

		},

		Mutation:	{

				createUser(_,	{	user,	secretKey	},	context)	{

						//	TODO

				}

		}

}

We	have	three	things	to	do	in	our	resolver:

verify		secretKey		is	correct
create	the	user
return	the	user

Best	practice	is	to	avoid	committing	secrets	to	git,	so	we	won’t	do		if	(secretKey	!==	'foo')	.	Instead,	we’ll	use	the
	dotenv		package	to	set	an	environment	variable.	First	we	need	to	generate	a	secret:

$	node

>	require('crypto').randomBytes(15,	(e,	buffer)	=>	console.log(buffer.toString('hex')))

9e769699fae6f594beafb46e9078c2

>	.exit

Then	we	put	it	in	a	file	named		.env	:

SECRET_KEY=9e769699fae6f594beafb46e9078c2

That	we	have	git	ignore:

	.gitignore	

node_modules/

dist/

.env

And	then	we	have		dotenv		read	the	values	listed	in		.env		into		process.env		at	the	beginning	of	our	code	(the	first	line
of		src/index.js):

import	'dotenv/config'

import	{	ApolloServer	}	from	'apollo-server'

import	typeDefs	from	'./schema/schema.graphql'

...

Chapter	11:	Server	Dev

249

https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0
https://github.com/motdotla/dotenv#readme

And	then	we	can	reference		process.env.SECRET_KEY		in	our	code:

	src/resolvers/User.js	

import	{	AuthenticationError	}	from	'apollo-server'

export	default	{

		Query:	...

		Mutation:	{

				createUser(_,	{	user,	secretKey	},	context)	{

						if	(secretKey	!==	process.env.SECRET_KEY)	{

								throw	new	AuthenticationError('wrong	secretKey')

						}

						//	TODO

				}

		}

}

We’ll	learn	about	errors	in	the	Errors	section.

The	next	step	is	creating	the	user,	for	which	we	need	a	users	data	source!	We	create	a	new	file:

	src/data-sources/Users.js	

import	{	MongoDataSource	}	from	'apollo-datasource-mongodb'

export	default	class	Users	extends	MongoDataSource	{

		create(user)	{

				user.updatedAt	=	new	Date()

				this.collection.insertOne(user)

				return	user

		}

}

The		create()		method	adds	an		updatedAt		property,	inserts,	and	returns,	just	like	our		Reviews		data	source.	We
include	our	new	data	source	in	the	index	file:

	src/data-sources/index.js	

import	Reviews	from	'./Reviews'

import	Users	from	'./Users'

import	{	db	}	from	'../db'

export	default	()	=>	({

		reviews:	new	Reviews(db.collection('reviews')),

		users:	new	Users(db.collection('users'))

})

So	now		users		will	be	available	in	our	resolvers	at		context.dataSources.users	:

	src/resolvers/User.js	

export	default	{

		Query:	...

		Mutation:	{

				createUser(_,	{	user,	secretKey	},	{	dataSources	})	{

						if	(secretKey	!==	process.env.SECRET_KEY)	{

								throw	new	AuthenticationError('wrong	secretKey')

						}

						return	dataSources.users.create(user)

				}

		}

}

Chapter	11:	Server	Dev

250

https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/7_0.2.0...8_0.2.0

Now	the		createUser		should	work	(using	your	own	data	and		authId		for	the		user		argument):

mutation	{

		createUser(

				user:	{

						firstName:	"John"

						lastName:	"Resig"

						username:	"jeresig"

						email:	"john@graphql.guide"

						authId:	"github|1615"

				}

				secretKey:	"9e769699fae6f594beafb46e9078c2"

)	{

				firstName

				lastName

		}

}

Setting	user	context

If	you’re	jumping	in	here,		git	checkout	8_0.2.0		(tag	8_0.2.0,	or	compare	8...9)

Now	that	we	have	our	user	document	in	the	database,	we	can	fetch	it	and	put	it	in	context:

	src/context.js	

import	{	getAuthIdFromJWT	}	from	'./util/auth'

import	{	db	}	from	'./db'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

		const	authId	=	await	getAuthIdFromJWT(jwt)

		const	user	=	await	db.collection('users').findOne({	authId	})

		if	(user)	{

				context.user	=	user

		}

		return	context

}

One	possible	concern	with	this	method	is	latency—every	authenticated	request	now	has	to	wait	for	a	round	trip	to	the
database	before	resolvers	are	run,	and	if	the	request	is	one	that	doesn’t	use		context.user	,	we’ve	wasted	that	time.
It’s	usually	not	a	long	enough	period	of	time	to	be	concerned	about,	but	if	we	were,	we	could	solve	it	in	a	couple	of

Chapter	11:	Server	Dev

251

https://github.com/GraphQLGuide/guide-api/tree/8_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/8_0.2.0...9_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/8_0.2.0...9_0.2.0

ways:

Store	whatever	user	data	we	needed	in	the	JWT.	Then	we	wouldn’t	have	to	fetch	it	from	the	database—we’d	just
decode	it.	This	takes	some	additional	coding,	and	what	the	code	looks	like	depends	on	how	you’re	creating	the
JWT	(in	this	case	we’d	be	talking	to	Auth0	via	their	API).	JWTs	have	a	limited	size	(~7k	sent	in	an	HTTP	header),
but	that	wouldn’t	be	a	limiting	factor	for	us,	since	we	don’t	have	that	much	user	data.
Put	a	Promise	on	the	context	instead	of	the	doc:

import	{	getAuthIdFromJWT	}	from	'./util/auth'

import	{	db	}	from	'./db'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

		const	authId	=	await	getAuthIdFromJWT(jwt)

		context.userPromise	=	db.collection('users').findOne({	authId	})

		return	context

}

And	then	any	resolvers	that	needed	user	data	would	do:

const	user	=	await	context.userPromise

That	would	clutter	the	code	a	little,	so	let’s	stick	with	our		context.user		code.	

Now	if	we	do	the		me		query	(and	set	our	authorization	header	as	we	did	in	the	Authenticating	section),	we	should	be
able	to	get	the	name	from	our	user	document:

There’s	more	data	about	a	user	that	our	web	client	will	need,	so	let’s	add	to	our	schema:

	src/schema/User.graphql	

type	User	{

		id:	ID!

		firstName:	String!

		lastName:	String!

		username:	String!

		email:	String!

		photo:	String!

		createdAt:	Date!

		updatedAt:	Date!

Chapter	11:	Server	Dev

252

https://github.com/GraphQLGuide/guide-api/compare/8_0.2.0...9_0.2.0

}

extend	type	Query	{

		me:	User

}

extend	type	Mutation	{

		createUser(user:	CreateUserInput!,	secretKey:	String!):	User

}

input	CreateUserInput	{

		firstName:	String!

		lastName:	String!

		username:	String!

		email:	String!

		authId:	String!

}

	username	,		email	,	and		updatedAt		are	fields	of	the	user	document,	so	we	don’t	need	resolvers	for	them.	We	do	need
resolvers	for		id	,		photo	,	and		createdAt	.	Also	note	that	we	don’t	have	a		User.authId		field:	while	it’s	part	of
	CreateUserInput		and	is	stored	in	the	user	document,	we	don’t	need	the	client	to	be	able	to	access	it,	so	leaving	it	out
of	the		User		type	means	they	won’t	be	able	to	query	for	it.

For	the		createdAt		resolver,	we	can	do	the	same	as	the		Review.createdAt		resolver,	calling	the		getTimestamp()	
method	of	the		ObjectId	:

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	(_,	__,	context)	=>	context.user

		},

		User:	{

				id:	({	_id	})	=>	_id,

				photo(user)	{

						//	user.authId:	'github|1615'

						const	githubId	=	user.authId.split('|')[1]

						return	`https://avatars.githubusercontent.com/u/${githubId}`

				},

				createdAt:	user	=>	user._id.getTimestamp()

		},

		Mutation:	...

}

For	the	user’s	photo	field,	we	can	use	GitHub	avatar	URLs,	which	have	the	GitHub	user	ID	at	the	end,	like:

https://avatars.githubusercontent.com/u/1615

And	we	can	get	the	GitHub	user	ID	number	from	the	second	part	of	the		authId	,	after	the		|		character	(for	example
	github|1615).

Now	we	can	query	for	all		User		fields:

Chapter	11:	Server	Dev

253

https://github.com/GraphQLGuide/guide-api/compare/8_0.2.0...9_0.2.0

Linking	users	to	reviews

If	you’re	jumping	in	here,		git	checkout	9_0.2.0		(tag	9_0.2.0,	or	compare	9...10)

Another	thing	we	can	add	now	that	we	have	a	users	collection	is	associate	users	with	reviews.	We	want	our	client	to
be	able	to	show	the	user’s	name	and	photo	next	to	reviews,	so	we	can	update	our		Review		type	with	an		author		field
that	resolves	to	a		User	:

	src/schema/Review.graphql	

type	Review	{

		id:	ID!

		author:	User!

		text:	String!

		stars:	Int

		fullReview:	String!

		createdAt:	Date!

		updatedAt:	Date!

}

When	we	create	the	review,	we	need	to	save	the	author’s	ID.	The	author	is	the	currently	logged-in	user,	which	is
stored	at		context.user	.	Inside	data	sources,	the	context	is	available	at		this.context	.	So	we	can	save
	this.context.user._id		to	an		authorId		field	of	the	review	document:

	src/data-sources/Reviews.js	

export	default	class	Reviews	extends	MongoDataSource	{

		...

		create(review)	{

				review.authorId	=	this.context.user._id

				review.updatedAt	=	new	Date()

				this.collection.insertOne(review)

				return	review

		}

}

Now	our	new		Review.author		resolver	can	use	this		authorId		prop	to	fetch	the	user	doc:

	src/resolvers/Review.js	

export	default	{

		Query:	...

		Review:	{

				id:	...

				author:	(review,	_,	{	dataSources	})	=>

						dataSources.users.findOneById(review.authorId),

Chapter	11:	Server	Dev

254

https://github.com/GraphQLGuide/guide-api/tree/9_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/9_0.2.0...10_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/9_0.2.0...10_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/9_0.2.0...10_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/9_0.2.0...10_0.2.0

				fullReview:	...

				createdAt:	...

		},

		Mutation:	...

}

The	next	task	is	updating	our	current	reviews	in	the	database	to	have	an		authorId		field	(because	we	made		author	
non-nullable,	we’ll	get	an	error	without	one).	Using	our	own	user	ID	(from	a		{	me	{	id	}	}		query)	in	the	below
	ObjectId	:

$	mongo

>	use	guide

switched	to	db	guide

>	db.reviews.updateMany({},	{$set:	{authorId:	ObjectId('5cf8331934e9730c83399fd5')}})

{	"acknowledged"	:	true,	"matchedCount"	:	2,	"modifiedCount"	:	2	}

>	exit

we	should	now	be	able	to	add		author		to	our	selection	set	for	our		reviews		query:

{

		reviews	{

				text

				stars

				author	{

						id

						firstName

						photo

				}

		}

}

And	we	should	also	be	able	to	create	a	review	and	select	the	author,	if	we	include	our	JWT	in	the	authorization
header:

Chapter	11:	Server	Dev

255

The	last	thing	to	update	is		Review.fullReview	:	let’s	change	“Someone	on	the	internet	gave	N	stars”	to	use	the
author’s	name.	Currently	we	have:

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	(_,	__,	{	dataSources	})	=>	dataSources.reviews.all()

		},

		Review:	{

				id:	review	=>	review._id,

				author:	(review,	_,	{	dataSources	})	=>

						dataSources.users.findOneById(review.authorId),

				fullReview:	review	=>

						`Someone	on	the	internet	gave	${review.stars}	stars,	saying:	"${

								review.text

						}"`,

				createdAt:	review	=>	review._id.getTimestamp()

		},

		Mutation:	...

}

We’d	like	to	do:

				fullReview:	review	=>

						`${review.author.firstName}	${review.author.lastName}	gave	${

								review.stars

						}	stars,	saying:	"${review.text}"`,

But	trying	to	query		{	reviews	{	fullReview	}	}		gives	the	error		Cannot	read	property	'firstName'	of	undefined	,	which
means	that		review.author		is	undefined.	This	is	because		review		is	a	MongoDB	document	and	has	an		authorId	
property,	not	an		author		property.	We	could	either	call	the	other	resolver	(as	we	saw	in	Custom	scalars	with
	Review.updatedAt)	or	use	the	data	source	directly:

export	default	{

		Query:	...

		Review:	{

				id:	review	=>	review._id,

				author:	(review,	_,	{	dataSources	})	=>

						dataSources.users.findOneById(review.authorId),

				fullReview:	async	(review,	_,	{	dataSources	})	=>	{

						const	author	=	await	dataSources.users.findOneById(review.authorId)

						return	`${author.firstName}	${author.lastName}	gave	${

								review.stars

						}	stars,	saying:	"${review.text}"`

				},

				createdAt:	review	=>	review._id.getTimestamp()

		},

		Mutation:	...

}

Chapter	11:	Server	Dev

256

https://github.com/GraphQLGuide/guide-api/compare/9_0.2.0...10_0.2.0

{	

		reviews	{	

				fullReview	

		}	

}

Authorizing
If	you’re	jumping	in	here,		git	checkout	10_0.2.0		(tag	10_0.2.0,	or	compare	10...11)

In	this	section	we’ll	implement	an	authorization	check	for	a	field	on	the		User		type.	Later,	in	the	Error	checking
section,	we’ll	talk	about	how	to	find	the	places	we	need	to	do	authorization	checks.

Let’s	first	add	a	new		user		query	for	fetching	a	single	user	by	id:

	src/schema/User.graphql	

extend	type	Query	{

		me:	User

		user(id:	ID!):	User

}

	src/resolvers/User.js	

import	{	ObjectId	}	from	'mongodb'

export	default	{

		Query:	{

				me:	(_,	__,	context)	=>	context.user,

				user:	(_,	{	id	},	{	dataSources	})	=>

						dataSources.users.findOneById(ObjectId(id))

		},

		User:	...

		Mutation:	...

We	have	to	turn	the		id		string	we	receive	as	an	argument	into	an		ObjectId		before	calling		findOneById()	.	The
alternative	would	be	to	create	an		ObjID		custom	scalar	that	parsed	string	arguments	into		ObjectId		objects,	and	then
if	we	changed	the	argument	type	from		ID		to		ObjID	,	then	the		id		argument	would	be	an		ObjectId		object	by	the
time	it	reached	our	resolver,	and	we	could	call		findOneById()		directly:

extend	type	Query	{

		me:	User

		user(id:	ObjID!):	User

}

Chapter	11:	Server	Dev

257

https://github.com/GraphQLGuide/guide-api/tree/10_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/10_0.2.0...11_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/10_0.2.0...11_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/10_0.2.0...11_0.2.0

				user:	(_,	{	id	},	{	dataSources	})	=>

						dataSources.users.findOneById(id)

import	{	GraphQLScalarType	}	from	'graphql'

import	{	ObjectId	}	from	'mongodb'

export	default	{

		ObjID:	new	GraphQLScalarType({

				name:	'ObjID',

				description:	...

				parseValue:	value	=>	ObjectId(value),

				parseLiteral:	ast	=>	ObjectId(ast.value),

				serialize:	objectId	=>	objectId.toString()

		})

}

Let’s	try	our	new		user		query:

We	might	now	notice	an	issue.	This	query	works	without	being	logged	in	(i.e.,	including	an	authorization	header),	and
it	returns	the	user’s	email	address.	Similarly,	we	can	query		{	reviews	{	author	{	email	}	}	}		without	being	logged	in.
Our	users	would	probably	prefer	their	email	addresses	to	not	be	publicly	available!	

There	are	a	few	possible	ways	to	solve	this	issue:

1.	 We	could	remove	the		email		field	from	the		User		type.	However,	it	would	be	nice	to	be	able	to	show	users	their
own	email	address	on	their	profile	page.

2.	 We	could	check	whether	the	user	is	fetching	their	own	email.

We	could	do	the	check	in	three	places:

Resolver:	we	just	add	an	if	statement	to	the	beginning	of	a		User.email		resolver	function.
Data	source:	this	doesn’t	have	the	granularity	of	the		User.email		resolver.	If	we	threw	an	error	in	the	data	source
method,	the	client	wouldn’t	get	any	of	the	user’s	data.	Doing	authorization	checks	in	data	sources	works	well	for
preventing	access	to	whole	objects:	for	instance,	if	we	wanted	to	prevent	clients	from	fetching	any	user	but	their
own.	It	works	particularly	well	when	there	are	multiple	places	in	the	schema	the	user	can	be	accessed	from.
Instead	of	doing	the	check	both	in		Query.user		and		Review.author	,	we	can	do	it	once	in	the		findOneById()	
method	of	the		Users		data	source.
Schema:	we	can	add	a	custom	directive	like	@isCurrentUser:

type	User	{

		id:	ID!

		firstName:	String!

		lastName:	String!

		email:	String!	@isCurrentUser

		...

}

Chapter	11:	Server	Dev

258

https://blog.apollographql.com/reusable-graphql-schema-directives-131fb3a177d1

(And	we’d	make	more	directives	for	other	authorization	checks,	like		@isLoggedIn		to	deny	access	to	a	field	from
anonymous	clients	or		@isAdmin		to	only	allow	admins	to	access	a	field.)

Wherever	we	do	the	check,	when	the	user	being	requested	doesn’t	match	the	logged-in	user,	we	could	either:

Throw	an	error.
Return		null	.	The	upside	is	it’s	easier	for	clients	to	handle	than	an	error.	(For	example,	if	they	query	for	20
reviews	with	their	authors,	they’d	get	20	errors	to	sort	through.)	The	downside	is	they	don’t	know	why	they’re
getting	a		null		response—they	might	think	the	user	just	doesn’t	have	an	email.
Use	a	union	type	that	combines	the	normal	result	with	the	error	result,	like:

union	EmailResult	=	Email	|	Forbidden

type	Email	{

		address:	String!

		verified:	Boolean!

}

type	Forbidden	{

		message:	String!

}

type	User	{

		id:	ID!

		firstName:	String!

		lastName:	String!

		email:	EmailResult!

		...

}

We’ll	cover	union	errors	in	the	next	section.

In	this	case,	let’s	do	the	check	in	a	resolver	and	throw	an	error.	We	currently	don’t	have	a	resolver	for		User.email	,
because	Apollo	Server	just	uses	the	email	property	on	the	user	object.	It	does	the	equivalent	of	this	tiny	resolver:

{

		User:	{

				email:	user	=>	user.email

				...

		}

}

When	we	provide	our	own	resolver,	Apollo	Server	will	call	our	resolver	instead	of	automatically	returning		user.email	.
Here’s	what	our	resolver	looks	like:

	src/resolvers/User.js	

import	{	ForbiddenError	}	from	'apollo-server'

export	default	{

		Query:	{

				me:	(_,	__,	context)	=>	context.user,

				user:	(_,	{	id	},	{	dataSources	})	=>

						dataSources.users.findOneById(ObjectId(id))

		},

		User:	{

				id:	({	_id	})	=>	_id,

				email(user,	_,	{	user:	currentUser	})	{

						if	(!currentUser	||	!user._id.equals(currentUser._id))	{

								throw	new	ForbiddenError(`cannot	access	others’	emails`)

						}

						return	user.email

				},

				...

		},

Chapter	11:	Server	Dev

259

https://github.com/GraphQLGuide/guide-api/compare/10_0.2.0...11_0.2.0

		Mutation:	...

}

We’d	have	a	naming	conflict	if	we	destructured		user		from	context,	so	we	assign	to	a	new	variable	name
	currentUser	.	First	we	test	whether	there’s	any	user	at	all,	and	then	we	test	whether	it’s	the	same	user.	In	the	next
section	we’ll	see	what	the	error	looks	like	to	the	client!	

Errors
Nullability
Union	errors
formatError

Logging	errors
Masking	errors

Error	checking
Custom	errors

In	Nullability,	we’ll	see	what	a	thrown	error	looks	like	to	the	client,	and	we’ll	look	at	how	data	in	the	response	changes
based	on	whether	fields	are	nullable.	In	Union	errors	we’ll	use	the	union	type	to	return	errors	instead	of	throwing	them.
In	formatError	we	log	and	mask	errors,	in	Error	checking	we	go	through	all	the	other	errors	we	might	want	to	check	for
or	handle,	and	in	Custom	errors	we	create	our	own	type	of	Apollo	error.

Nullability

If	you’re	jumping	in	here,		git	checkout	11_0.2.0		(tag	11_0.2.0,	or	compare	11...12)

In	the	last	section,	we	throw	an	error	when	the	client	requests	an	email	address	and	they’re	either	not	logged	in	or	it’s
not	their	email.	Let’s	see	what	that	error	looks	like	by	making	a		user		query	without	an	authorization	header:

{

		user(id:	"[id	of	a	user	in	our	database]")	{

				id

				firstName

				lastName

				email

Chapter	11:	Server	Dev

260

https://github.com/GraphQLGuide/guide-api/tree/11_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/11_0.2.0...12_0.2.0

		}

}

We	get	an	errors	array	with	one	item	(an	object	with	fields		message	,		locations	,		path	,	and		extensions)	and		null	
data:

{

		"errors":	[

				{

						"message":	"cannot	access	others’	emails",

						"locations":	[

								{

										"line":	6,

										"column":	5

								}

],

						"path":	[

								"user",

								"email"

],

						"extensions":	{

								"code":	"FORBIDDEN",

								"exception":	{

										"stacktrace":	[

												"ForbiddenError:	cannot	access	others’	emails",

												...

]

								}

						}

				}

],

		"data":	{

				"user":	null

		}

}

The		message		matches	the	string	we	created	our	error	with:

		throw	new	ForbiddenError(`cannot	access	others’	emails`)

The		path		says	the	error	occurred	in	the		email		field	of	the		user		query,	and		locations		gives	the	line	and
column	number	of	the		email		field	in	the	client’s	query	document.
	extensions.code		is	set	to		FORBIDDEN		by	the		ForbiddenError()		we’re	using.	If	we	use	a	plain		Error		(throw	new
Error("cannot	access	others’	emails")),	then		extensions.code		would	be		INTERNAL_SERVER_ERROR	.
The	stack	trace	is	included	unless		NODE_ENV		is	set	to		'production'	.

It	would	be	nice	if	the	server	returned	the	rest	of	the	user	data	we	requested	(id	,		firstName	,	and		lastName)
instead	of	just		null	.	The	reason	it	doesn’t	is		User.email		is	non-nullable	(String!),	so	a	null	cascade	occurs:
without	an	email	value,	the	server	isn't	able	to	return	a	whole	valid		User		type,	so	it	returns		null		for	the	whole
	Query.user		field.	If	we	make	it	nullable	by	removing	the		!	,	throwing	an	error	from	the		User.email		resolver	will
return		null		just	for	the		email		field—the	server	will	still	return	the	rest	of	the		User		fields:

	src/schema/User.graphql	

type	User	{

		id:	ID!

		firstName:	String!

		lastName:	String!

		username:	String!

		email:	String

		...

}

Chapter	11:	Server	Dev

261

https://github.com/GraphQLGuide/guide-api/compare/11_0.2.0...12_0.2.0

	This	is	a	great	improvement,	especially	since	in	the	non-nullable	case,	a	thrown	error	results	in	not	just		null		for
the	user,	but	anything	at	a	higher	level	as	well!	For	example,	here’s	a		reviews		query	requesting	a	non-nullable
	email	:

{

		reviews	{

				text

				stars

				author	{

						email

				}

		}

}

Apollo	server	tries	to	return	null	for	email,	but	it’s	non-nullable,	so	then	it	tries	to	return	null	for		Review.author	,	but	it’s
non-nullable,	so	then	it	tries	to	return		null		for	the	review,	but	the	review	is	non-nullable	and	the	list	of	reviews	is	non-
nullable	so	we	don’t	even	end	up	with		"data":	{"reviews":	null}	—we	just	get		"data":	null	!

So	when	we	throw	an	error	for	a	certain	field	but	still	want	the	client	to	get	the	rest	of	the	data,	we	want	to	remember
to	make	that	field	nullable.	

Union	errors

If	you’re	jumping	in	here,		git	checkout	12_0.2.0		(tag	12_0.2.0,	or	compare	12...13)

As	mentioned	in	the	Authorizing	section,	an	alternative	to	throwing	an	error	is	returning		null	.	The	downside	is	the
client	can’t	determine	whether	the	server	is	returning		null		because	there’s	no	data	or	because	the	client	doesn’t
have	access	to	it.	It	might	be	helpful	to	know	they	don’t	have	access	so	that	they	can	prompt	the	user	to	log	in.

Chapter	11:	Server	Dev

262

https://github.com/GraphQLGuide/guide-api/tree/12_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/12_0.2.0...13_0.2.0

When	a	field’s	type	is	an	object	type,	an	alternative	to	returning		null		from	the	resolver	is	returning	an	error	object.
We	can	do	this	by	changing	the	type	to	a	union.	Instead	of:

type	Query	{

		item(id:	Int!):	Item

}

type	Item	{

		id:	Int

		name:	String

}

we	can	do:

type	Query	{

		item	(id:	Int!):	ItemResult

}

type	Item	{

		id:	Int

		name:	String

}

type	ItemError	{

		reason:	String

}

union	ItemResult	=	Item	|	ItemError

Now	the		item		query	resolver	is	able	to	return	either	an		Item		or	an		ItemError	.	This	query:

{

		item(id:	1)	{

				__typename

				...	on	Item	{

						name

				}

				...	on	ItemError	{

						reason

				}

		}

}

can	return	either	of	these	two	JSON	responses:

{

		"data":	{

				"item":	{

						"__typename":	"Item",

						"id":	1,

						"name":	"GraphQL	hacky	sack"

				}

		}

}

{

		"data":	{

				"item":	{

						"__typename":	"ItemError",

						"reason":	"This	item	has	been	discontinued."

				}

		}

}

Chapter	11:	Server	Dev

263

Why	do	this?	It	can	be	easier	for	the	client	to	handle	the	errors	if	they’re	inline	in	the		"data"		attribute	of	the	JSON
rather	than	the		"errors"		attribute.	For	example,	imagine	a		searchUsers		query	that	returned	a	long	list	of	users.	If	we
wanted	the	client	to	be	able	to	show	some	information	about	deleted	or	suspended	users,	and	we	threw	errors	for
each	one,	the	client	would	have	to	go	through	an	array	of		"errors"		in	the	JSON	response	and	match	them	up	with
holes	in	the		data.searchUsers		results.	Further,	they	would	have	to	be	familiar	with	what	type	of	errors	are	thrown	and
the	format	of	the	error	data.	Versus	if	we	document	in	the	schema	the	types	of	expected	errors	and	return	them	from
resolvers,	clients	know	what	data	possibilities	to	expect,	and	they	can	smoothly	iterate	over	just	the		data.searchUsers	
JSON	array	that	they	get.

Expected	is	highlighted	because	unexpected	errors	(like	an	unauthorized	error	or	database	failure)	are	usually
kept	as	thrown	errors,	for	the	client	to	handle	outside	of	its	normal	process	of	presenting	expected	data	on	the
screen.

Let’s	implement	this		searchUsers		query	to	see	what	it	looks	like.	As	usual,	we’ll	start	with	the	schema:

	src/schema/User.graphql	

extend	type	Query	{

		me:	User

		user(id:	ID!):	User

		searchUsers(term:	String!):	[UserResult!]!

}

type	DeletedUser	{

		username:	String!

		deletedAt:	Date!

}

type	SuspendedUser	{

		username:	String!

		reason:	String!

		daysLeft:	Int!

}

union	UserResult	=	User	|	DeletedUser	|	SuspendedUser

A		UserResult		union	type	can	be	either	a		User	,		DeletedUser	,	or		SuspendedUser	,	each	of	which	have	a		__typename	
and		username		but	have	different	other	fields.	Let’s	implement	the		searchUsers		resolver	next:

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	...

				user:	...

				searchUsers:	(_,	{	term	},	{	dataSources	})	=>

						dataSources.users.search(term)

		},

We	take	the	search		term		parameter	and	pass	it	to	a		search()		method,	which	will	talk	to	the	database:

	src/data-sources/Users.js	

export	default	class	Users	extends	MongoDataSource	{

		...

		search(term)	{

				return	this.collection.find({	$text:	{	$search:	term	}	}).toArray()

		}

}

Chapter	11:	Server	Dev

264

https://github.com/GraphQLGuide/guide-api/compare/12_0.2.0...13_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/12_0.2.0...13_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/12_0.2.0...13_0.2.0

	$text:	{	$search:	term	}		does	a	text	search	of	the	users	collection.	For	it	to	work,	we	need	to	create	a		text		index,
which	includes	all	the	fields	we	want	to	search—in	this	case,	the	name	and	username	fields.	In	MongoDB,	we	usually
use	the		collection.createIndex()		method,	which	checks	if	the	index	already	exists,	and	creates	it	if	not.	It	would	be
nice	to	put	the	command	in	the	same	file	as	our		search()		method	so	that	it’s	easy	to	see	which	fields	are	being
searched.	One	method	we	know	will	get	called	is	the	constructor,	so	we	can	put	it	there:

export	default	class	Users	extends	MongoDataSource	{

		constructor(collection)	{

				super(collection)

				this.collection.createIndex({

						firstName:	'text',

						lastName:	'text',

						username:	'text'

				})

		}

		...

}

We’re	currently	instantiating	this	data	source	with:

new	Users(db.collection('users'))

so	in	order	to	maintain	that	functionality,	we	need	to	take	that	object	argument		collection		and	pass	it	to		super()	.

A	new		Users		object	is	created	for	every	request,	which	is	far	more	often	than	we	need	to	be	calling
	createIndex()	—once	at	server	startup	would	be	sufficient—but	the	performance	impact	is	miniscule,	so	we
needn’t	worry	about	it	until	we’re	at	Google	scale	 .

Now	our		search()		method	returns	a	list	of	users,	but	they’re	all	normal	users—we	don’t	have	any	suspended	or
deleted	users	yet.	Let’s	create	three	users	in	our	database,	all	with	the	same	first	name	so	that	they	come	up	in	a
single	search:

If	you	generated	your	own	secret	key,	use	that.	It’s	located	in	your		.env		file.

mutation	{

		createUser(

				user:	{

						firstName:	"John"

						lastName:	"Resig"

						username:	"jeresig"

						email:	"john@graphql.guide"

						authId:	"github|1615"

				}

				secretKey:	"9e769699fae6f594beafb46e9078c2"

)	{

				firstName

				lastName

		}

}

mutation	{

		createUser(

				user:	{

						firstName:	"John"

						lastName:	"Smith"

						username:	"jsmith"

						email:	"jsmith@example.com"

						authId:	"github|1"

				}

				secretKey:	"9e769699fae6f594beafb46e9078c2"

)	{

Chapter	11:	Server	Dev

265

https://docs.mongodb.com/manual/text-search/
http://mongodb.github.io/node-mongodb-native/3.1/api/Collection.html#createIndex

				firstName

				lastName

		}

}

mutation	{

		createUser(

				user:	{

						firstName:	"John"

						lastName:	"Rest"

						username:	"rest4eva"

						email:	"rest4eva@example.com"

						authId:	"github|2"

				}

				secretKey:	"9e769699fae6f594beafb46e9078c2"

)	{

				firstName

				lastName

		}

}

Now	we	can	use	the	mongo	shell	to	mark	John	Rest	deleted	and	John	Smith	suspended:

$	mongo

>	use	guide

>	db.users.updateOne({	username:	'rest4eva'	},	{	$set:	{	deletedAt:	new	Date()	}	})

{	"acknowledged"	:	true,	"matchedCount"	:	1,	"modifiedCount"	:	1	}

>	db.users.updateOne({	username:	'jsmith'	},	{	$set:	{	suspendedAt:	new	Date(),	durationInDays:	300,	reason:	'T

erms	of	Service	violation'	}	})

{	"acknowledged"	:	true,	"matchedCount"	:	1,	"modifiedCount"	:	1	}

Now	let’s	go	back	to	our	code—our	resolver	returns	a	list	of	users:

this.collection.find({	$text:	{	$search:	term	}	}).toArray()

But	we	don’t	want	all	of	the	returned	objects	to	be	of	type		User	—then	the	client	would	get	the	user	data	of	the
deleted/suspended	users	and	not	know	they	were	deleted/suspended.	Whenever	we	use	a	union	type,	we	need	to	tell
Apollo	which	objects	are	of	which	type.	For	that	we	use	a	special	resolver	called		__resolveType	:

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	

				user:	...

				searchUsers:	(_,	{	term	},	{	dataSources	})	=>

						dataSources.users.search(term)

		},

		UserResult:	{

				__resolveType:	result	=>	{

						if	(result.deletedAt)	{

								return	'DeletedUser'

						}	else	if	(result.suspendedAt)	{

								return	'SuspendedUser'

						}	else	{

								return	'User'

						}

				}

		},

Now	when	we	return	an	object	from	a	resolver	that’s	supposed	to	return	a		UserResult	,	Apollo	gives	that	object	to
	UserResult.__resolveType()	,	which	returns	the	type	of	the	object.	So	now	the	server	can’t	return	the		firstName		of	a
deleted	user,	because	it’s	not	a	field	of		DeletedUser		in	the	schema.

Chapter	11:	Server	Dev

266

https://github.com/GraphQLGuide/guide-api/compare/12_0.2.0...13_0.2.0

The	last	piece	we	need	to	add	is		SuspendedUser.daysLeft	,	which	isn’t	stored	in	the	database	(we	only	store
	suspendedAt		and		durationInDays		in	the	database).	So	we	create	a	resolver	for	it:

import	{	addDays,	differenceInDays	}	from	'date-fns'

export	default	{

		Query:	...

		UserResult:	...

		SuspendedUser:	{

				daysLeft:	user	=>	{

						const	end	=	addDays(user.suspendedAt,	user.durationInDays)

						return	differenceInDays(end,	new	Date())

				}

		},

	addDays		returns	a	date,	and		differenceInDays		returns	an	integer.	Now	we	can	make	our	query:

{

		searchUsers(term:	"john")	{

				__typename

				...	on	User	{

						username

						firstName

						lastName

						photo

				}

				...	on	DeletedUser	{

						username

						deletedAt

				}

				...	on	SuspendedUser	{

						username

						reason

						daysLeft

				}

		}

}

Even	though		username		is	common	to	all	possible	types,	with	unions,	the	only	field	we	can	select	outside	of	an
inline	fragment	is	the	meta	field		__typename	.

Chapter	11:	Server	Dev

267

https://date-fns.org/v1.30.1/docs/addDays
https://date-fns.org/v1.30.1/docs/differenceInDays

Now	the	client	can	iterate	over		data.searchUsers		and	check	the		__typename	,	and	if	it’s	a		DeletedUser		or
	SuspendedUser	,	display	that	user	differently.

formatError

There’s	an	Apollo	Server	option	called		formatError		that	allows	us	to	log	and	modify	errors.	In	this	section	we’ll	see	a
couple	situations	in	which	we	might	use	it.

Logging	errors

Background:	Json	Web	Tokens

If	you’re	jumping	in	here,		git	checkout	13_0.2.0		(tag	13_0.2.0,	or	compare	13...14)

Usually	when	there	are	server	errors,	we	see	them	in	the		errors		field	of	the	JSON	response.	In	Playground,	it’s
usually	easy	to	see	all	the	error	information,	including	the	stack	trace,	but	when	it’s	not	easy	to	see	the	error	on	the
client,	it	would	be	nice	to	be	able	to	see	the	error	in	the	server	output	on	the	command	line.	And	in	production	we
need	some	way	of	tracking	the	errors	our	users	trigger.

There	is	one	case	in	which	Playground	doesn’t	conveniently	show	us	the	server	error:	when	it	receives	an	error	from
an	introspection	query.	Playground	periodically	sends	an	introspection	query	to	our	server	to	get	an	up-to-date
schema	to	back	its	query	checking	and	schema	tab.	When	we	set	an	HTTP	header,	Playground	uses	it	for	the
introspection	query	as	well.	So	when	we	set	an	invalid	authorization	header,	the	server	returns	an	error	for	the
introspection	query,	but	Playground	might	not	show	it	to	us—it	might	just	say	“Response	not	successful”:

{

		me	{

				email

		}

}

{

		"authorization":	"it's	me,	john!"

}

If	we	go	into	the	devtools	Network	tab	and	select	a		localhost		request,	we	can	see	the	GraphQL		errors		field,	but	it’s
hard	to	read	the	stack	trace—we	either	have	to	scroll	and	visually	parse	the	newlines	or	paste	it	into	a	JSON	formatter
(we	recommend	jq:		brew	install	jq	,	copy,		pbpaste	|	jq	.).

Chapter	11:	Server	Dev

268

https://www.apollographql.com/docs/apollo-server/features/errors/#masking-and-logging-errors
https://github.com/GraphQLGuide/guide-api/tree/13_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/13_0.2.0...14_0.2.0
https://stedolan.github.io/jq/

Since	that	takes	a	few	steps,	let’s	instead	log	the	error	using		formatError	:

	src/index.js	

import	formatError	from	'./formatError'

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context,

		formatError

})

	src/formatError.js	

export	default	error	=>	{

		console.log(error)

		return	error

}

Now	the	error	is	logged	to	the	terminal:

{	[JsonWebTokenError:	Context	creation	failed:	jwt	malformed]

		message:	'Context	creation	failed:	jwt	malformed',

		locations:	undefined,

		path:	undefined,

		extensions:	

			{	code:	'INTERNAL_SERVER_ERROR',

					exception:	{	stacktrace:	[Array]	}	}	}

But	we	don’t	see	the	stack	trace,	so	let’s	log	that	as	well,	if	the	error	has	one:

import	get	from	'lodash/get'

export	default	error	=>	{

		console.log(error)

		console.log(get(error,	'extensions.exception.stacktrace'))

		return	error

}

And	now	we	also	get:

['JsonWebTokenError:	Context	creation	failed:	jwt	malformed',

Chapter	11:	Server	Dev

269

https://www.apollographql.com/docs/apollo-server/features/errors/#masking-and-logging-errors
https://github.com/GraphQLGuide/guide-api/compare/13_0.2.0...14_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/13_0.2.0...14_0.2.0

		'				at	module.exports	(/guide-api/node_modules/jsonwebtoken/verify.js:63:17)',

		'				at	internal/util.js:230:26',

		'				at	verify	(/guide-api/src/util/auth.js:24:31)',

		'				at	ApolloServer._default	[as	context]	(/guide-api/src/context.js:8:24)',

		'				at	ApolloServer.<anonymous>	(/guide-api/node_modules/apollo-server-core/src/ApolloServer.ts:535:24)',

		'				at	Generator.next	(<anonymous>)',

		'				at	/guide-api/node_modules/apollo-server-core/dist/ApolloServer.js:7:71',

		'				at	new	Promise	(<anonymous>)',

		'				at	__awaiter	(/guide-api/node_modules/apollo-server-core/dist/ApolloServer.js:3:12)',

		'				at	ApolloServer.graphQLServerOptions	(/guide-api/node_modules/apollo-server-core/dist/ApolloServer.js:31

6:16)']

And	we	can	further	debug!	The	error	starts	in		node_modules/		(/guide-
api/node_modules/jsonwebtoken/verify.js:63:17),	so	let’s	look	for	the	first	lines	that	are	inside	our	code	(src/):

		'				at	verify	(/guide-api/src/util/auth.js:24:31)',

		'				at	ApolloServer._default	[as	context]	(/guide-api/src/context.js:8:24)',

Now	let’s	look	at		src/context.js	:

import	{	getAuthIdFromJWT	}	from	'./util/auth'

import	{	db	}	from	'./db'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

		const	authId	=	await	getAuthIdFromJWT(jwt)

		const	user	=	await	db.collection('users').findOne({	authId	})

		if	(user)	{

				context.user	=	user

		}

		return	context

}

Line	8	is		const	authId	=	await	getAuthIdFromJWT(jwt)	.	So	the	error	message		"jwt	malformed"		means	the
authorization	header	is	not	formatted	as	a	valid	JWT.

We	achieved	our	goal	of	using		formatError		to	log	the	error	so	that	we	could	debug	it.	We	can’t	prevent	clients	from
sending	bad	authorization	headers,	but	we	can	improve	the	errors	we	throw.	The	two	most	common	errors	thrown
during	JWT	parsing	are		jwt	malformed		and		jwt	expired	,	so	let’s	cover	those:

	src/context.js	

import	{	AuthenticationError	}	from	'apollo-server'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

		let	authId

		if	(jwt)	{

				try	{

						authId	=	await	getAuthIdFromJWT(jwt)

				}	catch	(e)	{

						let	message

						if	(e.message.includes('jwt	expired'))	{

								message	=	'jwt	expired'

						}	else	{

								message	=	'malformed	jwt	in	authorization	header'

						}

						throw	new	AuthenticationError(message)

				}

				const	user	=	await	db.collection('users').findOne({	authId	})

Chapter	11:	Server	Dev

270

https://github.com/GraphQLGuide/guide-api/compare/13_0.2.0...14_0.2.0

				context.user	=	user

		}

		return	context

}

We	catch	errors	from		getAuthIdFromJWT()	,	and	use	a	different	error	message	depending	on	the	kind	of	error.	Then	we
use	Apollo’s		AuthenticationError		error	type,	which	adds	an		extensions.code		of		"UNAUTHENTICATED"		to	the	error.	The
other	errors	that	might	occur	are	from	the	database	(during	the		findOne())—we’ll	cover	these	in	the	next	section.
Let’s	also	throw	an	error	when	there	is	no	matching	user	in	the	database:

	src/context.js	

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

		let	authId

		if	(jwt)	{

				...

				const	user	=	await	db.collection('users').findOne({	authId	})

				if	(user)	{

						context.user	=	user

				}	else	{

						throw	new	AuthenticationError('no	such	user')

				}

		}

		return	context

}

Now	let’s	repeat	our	bad-header	query	and	see	what	new	error	we	get	in	the	console:

{	[AuthenticationError:	Context	creation	failed:	malformed	jwt	in	authorization	header]

		message:	'Context	creation	failed:	malformed	jwt	in	authorization	header',

		locations:	undefined,

		path:	undefined,

		extensions:	{	code:	'UNAUTHENTICATED',	exception:	{	stacktrace:	[Array]	}	}	}

['AuthenticationError:	Context	creation	failed:	malformed	jwt	in	authorization	header',

		'				at	ApolloServer._default	[as	context]	(/Users/me/gh/guide-api/src/context.js:21:13)',

		'				at	<anonymous>',

		'				at	runMicrotasksCallback	(internal/process/next_tick.js:121:5)',

		'				at	_combinedTickCallback	(internal/process/next_tick.js:131:7)',

		'				at	process._tickCallback	(internal/process/next_tick.js:180:9)']

We	now	see	the		UNAUTHENTICATED		error	code	and	the	more	detailed	error	message.	Our	piece	of	the	message
—	malformed	jwt	in	authorization	header	—is	preceded	by		Context	creation	failed:	,	which	is	added	by	Apollo	for
any	errors	that	occur	in	the	context	function,	and		AuthenticationError:	,	which	is	taken	from	the	name	of	the	error
object.

Masking	errors

If	you’re	jumping	in	here,		git	checkout	14_0.2.0		(tag	14_0.2.0,	or	compare	14...15)

	formatError()		isn’t	just	for	logging—as	the	name	indicates,	we	can	change	the	error.	The	most	common	change	is
masking	an	error	we	don’t	want	the	client	to	see.

You	may	have	noticed	that	we	return	the	error	in	the	last	line	of	the		formatError()		function:

	src/formatError.js	

export	default	error	=>	{

Chapter	11:	Server	Dev

271

https://github.com/GraphQLGuide/guide-api/compare/13_0.2.0...14_0.2.0
https://github.com/GraphQLGuide/guide-api/tree/14_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/14_0.2.0...15_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/14_0.2.0...15_0.2.0

		console.log(error)

		console.log(get(error,	'extensions.exception.stacktrace'))

		return	error

}

When	an	error	is	thrown	in	our	code,	Apollo	catches	it	and	gives	it	to		formatError()	,	which	returns	an	error	object,
which	Apollo	serializes	into	JSON	and	sends	in	the		errors		attribute	to	the	client.	Inside		formatError()	,	we	can
modify	the	error	object—by	editing,	adding,	or	removing	properties—or	return	a	new	error.

A	common	category	of	error	to	mask	is	database	errors—we	might	want	to	hide	the	original	error	message	for	security
reasons	or	to	avoid	confusing	non-technical	users	with	messages	they	don’t	understand.	Let’s	see,	for	example,	what
errors	happen	when	the	server	can’t	reach	the	database.	We	can	stop	the	database	with	this	command:

$	brew	services	stop	mongodb-community

If	we	wait	30	seconds	and	then	make	a	request,	we	get	a		MongoNetworkError	:

And	if	we	keep	making	requests,	we	start	getting		"MongoError:	Topology	was	destroyed"	:

Chapter	11:	Server	Dev

272

Let’s	mask	both	of	those	with	a	new	error:

export	default	error	=>	{

		console.log(error)

		console.log(get(error,	'extensions.exception.stacktrace'))

		const	name	=	get(error,	'extensions.exception.name')	||	''

		if	(name.startsWith('Mongo'))	{

				return	new	Error('Internal	server	error')

		}	else	{

				return	error

		}

}

When	we	edit	our	code,	the	server	fails	to	restart	because	it	can’t	connect	to	the	database.	So	in	order	to	test,	we	can
restart	Mongo:

$	brew	services	start	mongodb-community

And	then	restart	the	server,	and	then	stop	Mongo:

$	brew	services	stop	mongodb-community

Now	we	get	our	masked	error	instead	of	either	of	the	Mongo	errors:

Chapter	11:	Server	Dev

273

One	last	note	on		formatError	—in	production,	we’ll	usually	want	to	send	our	errors	to	an	error	tracking	or	logging
service	instead	of	logging	them	to	the	server	console:

const	inProduction	=	process.env.NODE_ENV	===	'production'

export	default	error	=>	{

		if	(inProduction)	{

				//	send	error	to	tracking	service

		}	else	{

				console.log(error)

				console.log(get(error,	'extensions.exception.stacktrace'))

		}

		...

}

Error	checking

If	you’re	jumping	in	here,		git	checkout	15_0.2.0		(tag	15_0.2.0,	or	compare	15...16)

So	far	we’ve	dealt	with	the		User.email		authorization	error,	users	who	have	been	deleted	or	suspended,
authentication	errors,	and	MongoDB	errors.	Let’s	go	through	our	entire	app	and	think	about	all	the	possible	errors	we
want	to	handle	or	throw:

Network:	If	our	node	server	is	cut	off	from	the	internet,	or	if	there’s	a	DNS	issue,	the	client	won’t	be	able	to
connect	to	our	server,	and	will	see	an	error	that	will	look	different	depending	on	their	browser	or	platform.
Servers

Node:	If	our	Node	GraphQL	application	server	isn’t	running,	then	the	client	won’t	be	able	to	connect,	and	will
see	the	same	error	as	when	there’s	a	network	failure.
MongoDB:	We	mask	errors	with	our	MongoDB	server,	including	inability	to	connect,	in		formatError()	

Request:	If	the	network	request	isn’t	a	valid	GraphQL	HTTP	request,	then	the	error	will	be	handled	before	it
reaches	our	code—either	by	our	server’s	operating	system,	Node,	or	Apollo	Server.
Context:	Assuming	the	request	is	a	valid	GraphQL	request	(including	valid	against	our	schema),	the	server	starts
by	setting	the	context	for	resolvers.	This	process	often	involves	looking	at	request	headers.	We	covered	errors
that	might	occur	while	creating	context	in	the	Logging	errors	section.
Resolvers:

Arguments:	Apollo	validates	the	arguments’	data	types,	but	we	often	want	to	do	further	validation	on	the
argument	values.
Execution:	We	want	to	handle	any	possible	errors	that	might	occur	in	the	running	of	our	resolver	code—
things	like	invalid	JWT	decoding,	dividing	by	zero,	or	trying	to	access	a	3rd	party	service	that’s	offline.
Authorization:	If	there’s	data	or	functions	that	we	don’t	want	certain	people	to	access	or	trigger,	we	need	to
avoid	returning	the	data	/	running	the	functions.

Chapter	11:	Server	Dev

274

https://github.com/GraphQLGuide/guide-api/tree/15_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/15_0.2.0...16_0.2.0

In	this	section	we’ll	go	through	our	resolvers.	Let’s	start	with	authorization.	For	data	access,	let’s	look	at	our	main	data
types:

type	Review	{

		id:	ID!

		author:	User!

		text:	String!

		stars:	Int

		fullReview:	String!

		createdAt:	Date!

		updatedAt:	Date!

}

type	User	{

		id:	ID!

		firstName:	String!

		lastName:	String!

		username:	String!

		email:	String

		photo:	String!

		createdAt:	Date!

		updatedAt:	Date!

}

Depending	on	our	app,	we	might	consider		createdAt		and		updatedAt		to	be	sensitive,	but	for	us,	the	only	field	we
don’t	want	to	be	public	is		email	,	which	we	already	have	a	check	for.	If	we	had	an	app	for	which	an	entire	data	type
was	restricted,	then	in	order	to	verify	it	was	restricted	properly,	we	would	need	to	search	for	that	type	everywhere	it
was	referenced	in	the	schema	and	make	sure	those	queries,	mutations,	or	other	fields	were	restricted.	For	instance,	if
we	only	wanted	logged-in	users	to	be	able	to	view	user	data,	then	we’d	look	for		User		in	the	above	and	below	parts	of
the	schema:

type	Query	{

		hello(date:	Date):	String!

		isoString(date:	Date!):	String!

		reviews:	[Review!]!

		me:	User

		user(id:	ID!):	User

		searchUsers(term:	String!):	[UserResult!]!

}

type	Mutation	{

		createReview(review:	CreateReviewInput!):	Review

		createUser(user:	CreateUserInput!,	secretKey:	String!):	User

}

We	would	need	to	restrict		Review.author	,		Query.user	,	and		Query.searchUsers	,	and	make	sure	that:

	Query.me	,	which	returns	a		User	,	only	returns	the	current	user.
	Mutation.createUser	,	which	also	returns	a		User	,	doesn’t	return	any	user	but	the	one	just	created	by	that	client.

That’s	all	for	authorization	on	data	access.	The	other	part	is	authorization	on	running	functions—specifically,	functions
that	change	things.	While	it’s	possible	for	a		Query		resolver	function	to	change	something,	it’s	better	to	make	those
functions		Mutations	.	Let’s	assume	we’ve	defined	our		Query		and		Mutation		types	properly,	and	haven’t	accidentally
modified	data	in	our		Query		resolvers.	That	means	we	only	need	to	check	our	mutations,		createReview		and
	createUser	.		createUser		we	already	protected	with	a		secretKey	.		createReview		can	currently	be	run	by	anyone,	but
we	want	it	to	be	run	only	by	logged-in	users.	Let’s	fix	that:

	src/resolvers/Review.js	

import	{	ForbiddenError	}	from	'apollo-server'

export	default	{

		Query:	...

		Review:	...

Chapter	11:	Server	Dev

275

https://github.com/GraphQLGuide/guide-api/compare/15_0.2.0...16_0.2.0

		Mutation:	{

				createReview:	(_,	{	review	},	{	dataSources,	user	})	=>	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

						dataSources.reviews.create(review)

				}

		}

}

Now	when	we	try	the	mutation	without	an	authorization	header,	we	get	an	error	with	the	message		"must	be	logged
in"		and	code		"FORBIDDEN"	:

mutation	{

		createReview(review:	{	text:	"Grrrreeeeaat!",	stars:	5	})	{

				id

				text

				author	{

						firstName

				}

		}

}

That	concludes	authorization	in	resolvers.	Next	let’s	check	arguments.	First	we	look	back	at	the	schema	and	think
about	which	Query	arguments	need	further	validation:

type	Query	{

		hello(date:	Date):	String!

		isoString(date:	Date!):	String!

		reviews:	[Review!]!

		me:	User

		user(id:	ID!):	User

		searchUsers(term:	String!):	[UserResult!]!

}

We	don’t	need	to	do	anything	with	the	first	two	queries—our	custom	scalar	checks	validity,	and	any	valid	date	is	fine
for	those	queries.	The	third	and	fourth	don’t	have	arguments.	The	last	two	do.	Here’s	what	they	currently	look	like:

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	...

				user:	(_,	{	id	},	{	dataSources	})	=>

						dataSources.users.findOneById(ObjectId(id)),

				searchUsers:	(_,	{	term	},	{	dataSources	})	=>

Chapter	11:	Server	Dev

276

https://github.com/GraphQLGuide/guide-api/compare/15_0.2.0...16_0.2.0

						dataSources.users.search(term)

		},

		...

}

Searching	with	an	empty	string	gives	back	an	empty	list,	which	is	fine.	We	also	don’t	need	to	worry	about	a	NoSQL
injection	attack	with	a	text	search.	So	let’s	leave	the	searching	to	handle	any	string,	blank	or	malicious,	and	move	on
to		Query.user	.	Any	string	validates	as	an		ID	,	so	let’s	see	what	happens	when	we	try	to	get	a	user	with	an	ID	of
	'_why'	:

{

		user(id:	"_why")	{

					firstName

		}

}

We	get	an	error	with	the	message		"Argument	passed	in	must	be	a	single	String	of	12	bytes	or	a	string	of	24	hex
characters"		and	code		"INTERNAL_SERVER_ERROR"	.	We	can	tell	from	the	stack	trace	that	it’s	coming	from	our
	ObjectId(id)		call,	but	it	may	very	well	be	confusing	to	the	client.	Let’s	help	the	client	out	by	giving	them	a	better	error
message:

	src/resolvers/User.js	

import	{	UserInputError	}	from	'apollo-server'

const	OBJECT_ID_ERROR	=

		'Argument	passed	in	must	be	a	single	String	of	12	bytes	or	a	string	of	24	hex	characters'

export	default	{

		Query:	{

				me:	...

				user:	(_,	{	id	},	{	dataSources	})	=>	{

						try	{

								return	dataSources.users.findOneById(ObjectId(id))

						}	catch	(error)	{

								if	(error.message	===	OBJECT_ID_ERROR)	{

										throw	new	UserInputError('invalid	id',	{

												invalidArgs:	['id']

										})

								}	else	{

										throw	error

								}

						}

Chapter	11:	Server	Dev

277

https://github.com/GraphQLGuide/guide-api/compare/15_0.2.0...16_0.2.0

				},

We	use	another	built-in	error	type	called		UserInputError	,	which	sets		extensions.code		to		BAD_USER_INPUT		and	lists
the	invalid	arguments	in		extensions.invalidArgs	:

We’re	done	checking	Query	arguments.	Now	let’s	do	Mutation	arguments:

type	Mutation	{

		createUser(user:	CreateUserInput!,	secretKey:	String!):	User

		createReview(review:	CreateReviewInput!):	Review

}

Because	of		secretKey	,	we	can	trust	that	our	own	code	is	the	only	one	calling		createUser	.	Let’s	also	trust	that	our
code	sends	good	data	for	the		user		argument,	so	we	can	leave	that	resolver	alone.	Lastly	is		createReview		with
	CreateReviewInput	:

input	CreateReviewInput	{

		text:	String!

		stars:	Int

}

Inside	our	resolver,	we	can	trust	that		review.text		is	a	string	and	that		review.stars		is	either	undefined	or	an	integer.
We	need	to	further	check	that		review.text		is	a	valid	length	(let’s	say	at	least	two	characters)	and	that
	review.stars		is	between	0	and	5.

	src/resolvers/Review.js	

import	{	ForbiddenError,	UserInputError	}	from	'apollo-server'

const	MIN_REVIEW_LENGTH	=	2

const	VALID_STARS	=	[0,	1,	2,	3,	4,	5]

export	default	{

		Query:	...

Chapter	11:	Server	Dev

278

https://github.com/GraphQLGuide/guide-api/compare/15_0.2.0...16_0.2.0

		Review:	...

		Mutation:	{

				createReview:	(_,	{	review	},	{	dataSources,	user	})	=>	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

						if	(review.text.length	<	MIN_REVIEW_LENGTH)	{

								throw	new	UserInputError(

										`text	must	be	at	least	${MIN_REVIEW_LENGTH}	characters`,

										{	invalidArgs:	['text']	}

)

						}

						if	(review.stars	&&	!VALID_STARS.includes(review.stars))	{

								throw	new	UserInputError(`stars	must	be	between	0	and	5`,	{

										invalidArgs:	['stars']

								})

						}

						return	dataSources.reviews.create(review)

				}

		}

}

Since		CreateReviewInput!		is	non-null,	we	don’t	have	to	check	that		review		is	defined.	Similarly,	we	don’t	have	to
check	that		review.text		is	defined.	Let’s	check	both	errors:

mutation	{

		createReview(review:	{	text:	"A",	stars:	6	})	{

				id

				text

		}

}

Chapter	11:	Server	Dev

279

That’s	all	of	our	input	validation,	and	the	last	of	our	error	checking!	

Custom	errors

If	you’re	jumping	in	here,		git	checkout	16_0.2.0		(tag	16_0.2.0,	or	compare	16...17)

In	addition	to	the	built-in		UserInputError	,		ForbiddenError	,	and		AuthenticationError		that	we’ve	used,	there’s	also
their	superclass,		ApolloError	,	which	we	can	use	directly	to	add	arbitrary	error	data	or	extend	to	make	our	own	error
classes.	We’ll	do	both	in	this	section.

In	the	last	section,	when	checking	the		review		argument	to		createReview	,	we	threw	an	error	for	either		review.text	
or		review.stars	.	If	both	were	incorrect,	the	client	would	just	get	the	first	error,	for		review.text	.	Once	the	client	fixed
that	and	tried	again,	they	would	then	get	the		review.stars		error.	It	would	be	helpful	to	the	client	if	we	can	give	both
errors	at	the	same	time.

We	could	do		{	invalidArgs:	['text',	'stars']	}		and	combine	the	two	error	messages	into	one	message,	but	it
would	be	better	to	associate	each	error	message	with	the	corresponding	argument—that	way,	for	instance,	the	client
can	display	individual	error	messages	next	to	each	invalid	form	field.	It	turns	out	that		UserInputError		takes	any	object
as	its	second	argument	(and	adds	it	to	the	response	JSON’s		extensions.exception).	Let’s	keep	the	recommended
	invalidArgs		attribute,	but	change	the	value	from	an	array	to	an	object:

{

		invalidArgs:	{

				text:	'must	be	at	least	2	characters',

				stars:	'must	be	between	0	and	5'

		}

}

To	get	this,	we	update	the	code	to:

	src/resolvers/Review.js	

import	{	isEmpty	}	from	'lodash'

export	default	{

		Query:	...

		Review:	...

		Mutation:	{

				createReview:	(_,	{	review	},	{	dataSources,	user	})	=>	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

						const	errors	=	{}

Chapter	11:	Server	Dev

280

https://github.com/GraphQLGuide/guide-api/tree/16_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0

						if	(review.text.length	<	MIN_REVIEW_LENGTH)	{

								errors.text	=	`must	be	at	least	${MIN_REVIEW_LENGTH}	characters`

						}

						if	(review.stars	&&	!VALID_STARS.includes(review.stars))	{

								errors.stars	=	`must	be	between	0	and	5`

						}

						if	(!isEmpty(errors))	{

								throw	new	UserInputError('invalid	review',	{	invalidArgs:	errors	})

						}

						return	dataSources.reviews.create(review)

				}

		}

}

Now	we	see	both	errors	together!

mutation	{

		createReview(review:	{	text:	"A",	stars:	6	})	{

				id

				text

		}

}

We	use		UserInputError		in	one	other	place.	Let’s	update	the		invalidArgs		format	there	as	well	to	be	consistent	so
that	the	client	can	easily	programmatically	work	with		extensions.exception.invalidArgs	:

	src/resolvers/User.js	

if	(error.message	===	OBJECT_ID_ERROR)	{

		throw	new	UserInputError('invalid	id',	{

				invalidArgs:	{	id:	'not	a	valid	Mongo	ObjectId'	}

		})

}

We’ll	come	back	to		UserInputError		in	a	bit.	For	now	let’s	consider	this	from		src/formatError.js	:

return	new	Error('Internal	server	error')

The	resulting	response	is	bare,	without	even	a	stack	trace:

Chapter	11:	Server	Dev

281

https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0

Apollo	only	adds	the		extensions		field	(including	a	stack	trace	in	development)	for		ApolloError		and	its	subclasses.
So	let’s	use	that:

	src/formatError.js	

import	{	ApolloError	}	from	'apollo-server'

...

		if	(name.startsWith('Mongo'))	{

				return	new	ApolloError(

						`We’re	sorry—an	error	occurred.	We’ve	been	notified	and	will	look	into	it.`,

						'INTERNAL_SERVER_ERROR'

)

		}	else	{

				return	error

		}

	ApolloError		takes	three	arguments:	the	error	message,	a	code,	and	additional	properties	to	add	to
	extensions.exception	.	We’re	using	the	first	two.	Having	a	code	makes	it	easy	for	the	client	to	handle	all	internal
server	errors	similarly.	Having	a	user-friendly	message	means	that	the	client	can	show	it	directly	to	the	user.

In	case	we	want	to	throw	an	internal	server	error	elsewhere	in	the	future,	let’s	make	our	own		InternalServerError	
class:

	src/util/errors.js	

import	{	ApolloError	}	from	'apollo-server'

export	class	InternalServerError	extends	ApolloError	{

		constructor()	{

				super(

						`We’re	sorry—an	error	occurred.	We’ve	been	notified	and	will	look	into	it.`,

						'INTERNAL_SERVER_ERROR'

)

				Object.defineProperty(this,	'name',	{	value:	'InternalServerError'	})

		}

}

	super()		gets	the	same	arguments	that	the		ApolloError()		constructor	got.	The	last	thing	is	setting	the	object’s
name,	which	is	used	at	the	beginning	of	the	stack	trace.	Now	our	use	of	the	error	can	be	simplified:

Chapter	11:	Server	Dev

282

https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0
https://www.apollographql.com/docs/apollo-server/features/errors/#other-errors
https://github.com/GraphQLGuide/guide-api/blob/17_0.2.0/src/util/errors.js

	src/formatError.js	

import	{	InternalServerError	}	from	'./util/errors'

...

		if	(name.startsWith('Mongo'))	{

				return	new	InternalServerError()

		}	else	{

				return	error

		}

}

Let’s	also	make	a	custom	input	error.	Currently	we’re	using		UserInputError		like	this:

	src/resolvers/Review.js	

import	{	UserInputError	}	from	'apollo-server'

...

		if	(!isEmpty(errors))	{

				throw	new	UserInputError('invalid	review',	{	invalidArgs:	errors	})

		}

It	would	be	simpler	if	we	had	an		InputError		class	that	we	could	use	like	this:

import	{	InputError	}	from	'../util/errors'

...

		if	(!isEmpty(errors))	{

				throw	new	InputError({	review:	errors	})

		}

And	then		InputError		could	take	care	of	the	error	message	for	us.	We	could	also	use	it	in	our	user	resolver:

	src/resolvers/User.js	

import	{	InputError	}	from	'../util/errors'

export	default	{

		Query:	{

				me:	...

				user:	(_,	{	id	},	{	dataSources	})	=>	{

						try	{

								return	dataSources.users.findOneById(ObjectId(id))

						}	catch	(error)	{

								if	(error.message	===	OBJECT_ID_ERROR)	{

										throw	new	InputError({	id:	'not	a	valid	Mongo	ObjectId'	})

								}	else	{

										throw	error

								}

						}

				},

The	only	difference	here	is	that	our	argument		id		is	a	scalar	type,	so	we	pass		{	id:	'not	a	valid	Mongo	ObjectId'	}	
to		InputError()	,	versus	the		review		object	type	argument	to		createReview	,	which	looked	like:

{

		review:	{

				text:	'must	be	at	least	2	characters',

				stars:	'must	be	between	0	and	5'

		}

}

Chapter	11:	Server	Dev

283

https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/16_0.2.0...17_0.2.0

So	when	we	implement	our		InputError		class,	we	have	to	cover	both	scenarios—scalar	arguments	and	their
messages,	as	well	as	object	arguments	and	their	invalid	field	messages.	As	before,	we	subclass		ApolloError	,	but
this	time	the	constructor	creates	the	error		message	:

	src/util/errors.js	

export	class	InputError	extends	ApolloError	{

		constructor(errors)	{

				let	messages	=	[]

				for	(const	arg	in	errors)	{

						if	(typeof	errors[arg]	===	'string')	{

								//	scalar	argument

								const	errorReason	=	errors[arg]

								messages.push(`Argument	${arg}	is	invalid:	${errorReason}.`)

						}	else	{

								//	object	argument

								const	errorObject	=	errors[arg]

								for	(const	prop	in	errorObject)	{

										const	errorReason	=	errorObject[prop]

										messages.push(`Argument	${arg}.${prop}	is	invalid:	${errorReason}.`)

								}

						}

				}

				const	fullMessage	=	messages.join('	')

				super(fullMessage,	'INVALID_INPUT',	{	invalidArgs:	errors	})

				Object.defineProperty(this,	'name',	{	value:	'InputError'	})

		}

}

Now	when	we	make	an	invalid	query,	we	see:

a	very	detailed	error		message	
our	own	error	code		INVALID_INPUT	
a	different		invalidArgs		object,	from	which	we	can	tell	what	argument	the	fields		text		and		stars		are	on
(review)
“InputError”	at	the	beginning	of	the	stack	trace

In	this	section	we	went	over:

passing	arbitrary		extensions.exception		properties	as	the	second	argument	to		UserInputError()		(or	the	third

Chapter	11:	Server	Dev

284

https://github.com/GraphQLGuide/guide-api/blob/17_0.2.0/src/util/errors.js

argument	of		ApolloError())
using		ApolloError()		directly
creating	our	own	error	classes:		InternalServerError		and		InputError	

Subscriptions
githubStars
reviewCreated

GraphQL	subscriptions,	along	with	the	rest	of	the	spec,	are	transport-agnostic:	that	is,	the	two	parties	communicating
GraphQL	don’t	need	to	use	a	specific	way	of	sending	messages.	You	can	even	do	GraphQL	with	your	friend	by
passing	paper	notes	back	and	forth	 .

The	transport	we’ve	been	using	(HTTP)	won’t	work	for	subscriptions	because	HTTP	is	unidirectional—only	the	client
can	initiate	messages	to	the	server,	and	the	server	only	has	a	single	opportunity	to	respond.	We	need	a	bidirectional
transport—the	client	needs	to	be	able	to	tell	the	server	to	start	and	stop	the	subscription,	and	the	server	needs	to	send
subscription	events.	The	main	bidirectional	transport	used	in	web	programming	(and	most	often	used	for	GraphQL
subscriptions)	is	WebSockets.

In	HTTP/2,	the	server	can	push	resources	to	the	client,	but	not	messages	to	client	code.	With	SSE	(Server-sent
events),	the	server	can	send	messages	to	the	client,	and	if	we	combine	it	with	HTTP/2,	we	can	do	bidirectional
communication	over	a	single	connection.	However,	WebSockets	are	more	widely	supported	and	easier	to	set
up.

Subscriptions	over	WebSockets	is	supported	by	Apollo	Server	(at
	ws://hostname/graphql	—	ws://localhost:4000/graphql		in	development).	In	the	next	section,	we’ll	see	what	that	looks
like	with	a	simple	example.	Then	in	Review	updates	we’ll	code	a	more	complex	example.

githubStars

If	you’re	jumping	in	here,		git	checkout	17_0.2.0		(tag	17_0.2.0,	or	compare	17...18)

The	simplest	subscription	used	on	the	Guide	site	is	for	a	single	integer—the	number	of	stars	on	the
GraphQLGuide/guide	repo.	As	always,	we	start	with	the	schema:

	src/schema/Github.graphql	

type	Subscription	{

		githubStars:	Int!

}

This	means	that	each	subscription	event	that	the	server	sends	the	client	will	contain	a	single	integer	and	be	in	this
format:

{

		"data":	{

				"githubStars":	<integer>

		}

}

We	include	our	new		.graphql		file	by	adding	this	to	the	bottom	of		schema.graphql	:

	src/schema/schema.graphql	

#import	'Github.graphql'

Chapter	11:	Server	Dev

285

https://en.wikipedia.org/wiki/Server-sent_events
https://github.com/GraphQLGuide/guide-api/tree/17_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/17_0.2.0...18_0.2.0
https://github.com/GraphQLGuide/guide
https://github.com/GraphQLGuide/guide-api/blob/18_0.2.0/src/schema/Github.graphql
https://github.com/GraphQLGuide/guide-api/compare/17_0.2.0...18_0.2.0

We	need	a	publish	and	subscribe	system	to	keep	track	of	which	clients	to	send	events	to.	Apollo	Server	has	an
interface	that	all	pub/sub	packages	implement,	so	whichever	we	use,	the	API	will	be	the	same.	We	create	an	instance
of	the		PubSub		class,	use	its		.asyncIterator()		method	in	the	subscription	resolver,	and	its		.publish()		method	to
send	events.	Let’s	start	with	the	first	step,	using	the	in-memory,	for-use-in-development	version	of		PubSub		included	in
Apollo	Server:

	src/util/pubsub.js	

import	{	PubSub	}	from	'apollo-server'

export	const	pubsub	=	new	PubSub()

Our	resolver	is:

	src/resolvers/Github.js	

import	{	pubsub	}	from	'../util/pubsub'

export	default	{

		Subscription:	{

				githubStars:	{

						subscribe:	()	=>	pubsub.asyncIterator('githubStars')

				}

		}

}

For	subscriptions,	instead	of	defining	the	function	on		Subscription.field	,	we	use		Subscription.field.subscribe		and
return	an	iterator.	We’re	naming	the	iterator		'githubStars'	,	so	to	send	events	to	the	interator,	we’ll	do
	pubsub.publish('githubStars',	{	githubStars:	1337	})	.

Next	we	include	the	resolver:

	src/resolvers/index.js	

...

import	Github	from	'./Github'

export	default	[resolvers,	Review,	User,	Date,	Github]

Now	where	do	we	call		pubsub.publish()	?	We	have	to	get	the	information	first.	Where	do	we	get	it	from?	GitHub,	of
course!	The	first	three	versions	of	their	API	were	REST-based,	but	their	v4	is	a	GraphQL	API—let’s	use	that.	Their
docs	say	the	endpoint	is		https://api.github.com/graphql		and	that	we	need	to	create	an	access	token	to	use	the	API.
Once	we’ve	done	that,	we	add	a	new		GITHUB_TOKEN		environment	variable	with	the	token	we	created:

	.env	

SECRET_KEY=9e769699fae6f594beafb46e9078c2

GITHUB_TOKEN=...

Now	we	can	use		process.env.GITHUB_TOKEN		in	our	auth	header	to	the	GitHub	API.	Let’s	put	our	code	in	the		data-
sources/		directory.	Even	though	it	doesn’t	talk	to	our	database	or	follow	Apollo’s		DataSource		API	(since	we	don’t
need	context,	a	new	instance	for	every	request,	batching,	or	caching),	it	is	a	source	of	data	used	in	our	app.

	src/data-sources/Github.js	

import	{	GraphQLClient	}	from	'graphql-request'

const	githubAPI	=	new	GraphQLClient('https://api.github.com/graphql',	{

		headers:	{

				authorization:	`bearer	${process.env.GITHUB_TOKEN}`

Chapter	11:	Server	Dev

286

https://github.com/GraphQLGuide/guide-api/blob/18_0.2.0/src/util/pubsub.js
https://github.com/GraphQLGuide/guide-api/blob/18_0.2.0/src/resolvers/Github.js
https://github.com/GraphQLGuide/guide-api/compare/17_0.2.0...18_0.2.0
https://developer.github.com/v4/guides/forming-calls/#the-graphql-endpoint
https://developer.github.com/v4/guides/forming-calls/#authenticating-with-graphql
https://github.com/GraphQLGuide/guide-api/blob/18_0.2.0/src/data-sources/Github.js

		}

})

The	simplest	way	to	make	GraphQL	requests	is	with	the		graphql-request		npm	package.	Now	we	can	call
	githubAPI.request(queryString)	,	and	our	query	will	be	sent	to	GitHub	with	our	auth	header.

To	determine	what	our	query	should	be,	we	can	browse	GitHub’s	GraphQL	Explorer	(an	authenticated	GraphiQL).	A
repo’s	star	count	should	be	included	in	a	repository’s	information,	so	let’s	look	for	a	root	Query	field	for	getting	a
repository:

We	find:

#	Lookup	a	given	repository	by	the	owner	and	repository	name.

repository(owner:	String!,	name:	String!):	Repository

Clicking	on	the		Repository		type	gives	us	a	long	list	of	fields,	including	a		stargazers		field:

And	clicking	on	the		StargazerConnection		type	gives	us:

Chapter	11:	Server	Dev

287

https://github.com/prisma/graphql-request

And	we	find	that		totalCount		is	the	field	we	need.	Putting	all	of	that	together	gives	us:

const	GUIDE_STARS_QUERY	=	`

query	GuideStars	{

		repository(owner:	"GraphQLGuide",	name:	"guide")	{

				stargazers	{

						totalCount

				}

		}

}

`

We	can	make	this	query	periodically	to	keep	the	count	up	to	date.	Let’s	create	a		startPolling()		function	that	does
that.	When	it	gets	a	new	number,	it	will	call		pubsub.publish()	:

	src/data-sources/Github.js	

import	{	pubsub	}	from	'../util/pubsub'

...

export	default	{

Chapter	11:	Server	Dev

288

https://github.com/GraphQLGuide/guide-api/blob/18_0.2.0/src/data-sources/Github.js

		async	fetchStarCount()	{

				const	data	=	await	githubAPI.request(GUIDE_STARS_QUERY).catch(console.log)

				return	data	&&	data.repository.stargazers.totalCount

		},

		startPolling()	{

				let	lastStarCount

				setInterval(async	()	=>	{

						const	starCount	=	await	this.fetchStarCount()

						const	countChanged	=	starCount	&&	starCount	!==	lastStarCount

						if	(countChanged)	{

								pubsub.publish('githubStars',	{	githubStars:	starCount	})

								lastStarCount	=	starCount

						}

				},	1000)

		}

}

The	first	argument	to		pubsub.publish()		is	the	name	of	the	async	iterator	and	the	second	argument	is	the	event	data,
the	format	of	which	needs	to	match	our	Subscription	field	in	the	schema	(type	Subscription	{	githubStars:	Int!	}).

Next	we	need	to	call		startPolling()		on	startup.	The	place	where	all	the	other	data	sources	are	included	seems	a
fitting	place:

	src/data-sources/index.js	

import	Github	from	'./Github'

Github.startPolling()

The	last	change	we	need	to	make	is	to	our	context	function:

	src/context.js	

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req.headers.authorization

We’re	getting	a		req		argument	and	assuming	that	it	has		headers.authorization		properties.	But	actually,		req		will	be
undefined	for	subscriptions.	So	let’s	guard	against	that:

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req	&&	req.headers.authorization

Now	we	test	out	our	new	subscription:

subscription	{

		githubStars

}

Chapter	11:	Server	Dev

289

https://github.com/GraphQLGuide/guide-api/compare/17_0.2.0...18_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/17_0.2.0...18_0.2.0

When	we	hit	the	play	button,	it	turns	red,	but	nothing	appears	on	the	right—that’s	because	we	haven’t	received	an
event	from	the	server	yet,	because	the	server	only	publishes	when	the	value	changes.	But	if	we	star	the	repo,	we’ll
see	an	event	of	the	form:

{

		"data":	{

				"githubStars":	87

		}

}

And	when	we	unstar	the	repo,	we	see	another	event	with	the	number	one	lower.	Great,	we’ve	got	realtime	updates!	

Well…	depending	on	your	definition	of	realtime.	Since	we’re	polling	once	a	second,	we	might	lag	around	a	second.	In
the	next	section	we’ll	see	even	faster	updates,	where	the	publish	happens	as	soon	as	the	server	receives	a	user’s
action.

Lastly,	let’s	see	what	the	WebSocket	communication	looks	like.	If	we	open	devtools	Network	tab,	hit	the	stop	button	in
Playground,	hit	play,	unstar	and	re-star	the	repo,	select	the		graphql		item	in	the	list	on	the	bottom-left,	and	select	the
Messages	tab,	we’ll	see	something	like:

Chapter	11:	Server	Dev

290

https://github.com/GraphQLGuide/guide

The	rows	with	the	green	up	arrow	are	messages	sent	over	the	WebSocket	to	the	server,	and	the	rows	with	the	red
down	arrow	are	messages	sent	from	the	server	to	the	browser.	When	we	hit	the	play	button,	Playground	opens	the
connection	to		ws://localhost:4000/graphql		and	sends	two	messages:	one	with	type		connection_init		and	one	with:

	type:	"start"	—We’re	starting	a	subscription.
	payload.query	—The	GraphQL	document	containing	our	subscription	(what	we	typed	on	the	left	side	of	the
Playground).
	id:	1	—We	might	start	more	subscriptions	over	this	websocket,	so	we	have	a	number	to	identify	this	one	that
we’re	starting	in	this	message.

Then	the	server	sends	a	message	with	type		connection_ack		(acknowledging	receipt	of	the		connection_init),	and
messages	like	this:

	type:	"data"	—This	message	contains	a	subscription	event.
	id:	1	—This	event	corresponds	to	the	subscription	with	an		id		of	1.
	payload:	{data:	{githubStars:	89}}	—This	is	the	subscription	event,	which	Playground	displays	in	the	right-side
panel.

Similar	to	how	Playground	took	our	subscription	document	and	put	it	in	WebSocket	messages	in	the	right	format,	and
how	it	parsed	the	response	messages	and	displayed	the	payload	on	the	page,	most	of	our	clients	will	be	using
libraries	that	take	care	of	the	messaging	part,	so	that	all	they’ll	get	is	the	payload	object:		{data:	{githubStars:	89}}	.

Chapter	11:	Server	Dev

291

reviewCreated

If	you’re	jumping	in	here,		git	checkout	18_0.2.0		(tag	18_0.2.0,	or	compare	18...19)

In	the	last	section	we	set	up	our	first	subscription	for	a	single	integer	based	on	an	external	source	of	data.	In	this
section	we’ll	set	up	a	subscription	for	an	object	type	(Review)	based	on	a	user	action	(creating	a	review).	The
subscription	will	be	named		reviewCreated	,	and	whenever	any	user	creates	a	review,	the	server	will	send	an	event
with	that	review	data	to	all	the	clients	that	are	subscribed	to	the		reviewCreated		subscription.

Let’s	start	with	the	schema!

	src/schema/Review.graphql	

type	Subscription	{

		reviewCreated:	Review!

}

We	now	have	an	error	because	we’re	declaring		type	Subscription		in	two	places,	so	let’s	change	the	one	in
	Github.graphql		(which	we	can	see	in		src/schema/schema.graphql		is	included	after		Review.graphql		is	included)	to
	extend	type	Subscription	:

	src/schema/Github.graphql	

extend	type	Subscription	{

		githubStars:	Int!

}

Now	we	only	need	to	do	two	things:

add	a		Subscription.reviewCreated.subscribe		function	that	returns	an	iterator
at	the	end	of	the		createReview		resolver,	publish	the	new	review	object	to	that	iterator

	src/resolvers/Review.js	

import	{	pubsub	}	from	'../util/pubsub'

export	default	{

		Query:	...

		Review:	...

		Mutation:	{

				createReview:	(_,	{	review	},	{	dataSources,	user	})	=>	{

						...

						const	newReview	=	dataSources.reviews.create(review)

						pubsub.publish('reviewCreated',	{

								reviewCreated:	newReview

						})

						return	newReview

				}

		},

		Subscription:	{

				reviewCreated:	{	subscribe:	()	=>	pubsub.asyncIterator('reviewCreated')	}

		}

}

The	second	argument	to		pubsub.publish		is	the	event	data,	which	needs	to	match	the	schema	(reviewCreated:
Review!):	a		reviewCreated		attribute	with	an	object	of	type		Review		for	the	value.

Aaaaand	we’re	done!	That	was	easy.	To	test,	we	start	the	subscription	in	one	Playground	tab:

subscription	{

		reviewCreated	{

Chapter	11:	Server	Dev

292

https://github.com/GraphQLGuide/guide-api/tree/18_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/18_0.2.0...19_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/18_0.2.0...19_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/18_0.2.0...19_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/18_0.2.0...19_0.2.0

				id

				text

				stars

				createdAt

		}

}

And	create	the	review	in	another:

mutation	{

		createReview(review:	{	text:	"Now	that’s	a	downtown	job!",	stars:	5	})	{

				id

				text

		}

}

Now	when	we	go	back	to	the	subscription	tab,	we’ll	see	the	event:

Other	common	types	of	subscriptions	include	when	objects	are	edited	and	deleted:

type	Subscription	{

		reviewEdited:	Review!

		reviewDeleted:	ID!

}

	reviewEdited		events	would	include	the	review	post-edit,	and		reviewDeleted		events	would	just	include	the	ID	of	the
deleted	review,	so	that	clients	can	remove	it	from	their	cache.	We’ll	discuss	subscriptions	in	more	depth	in	the	section
Extended	topics	->	Subscription	design.

Testing

Chapter	11:	Server	Dev

293

Background:	Testing

Static	testing
Review	integration	tests
Code	coverage
User	integration	tests
Unit	tests
End-to-end	tests

In	the	Background	chapter	we	go	over	mocking	and	which	types	of	tests	are	best	to	write.

In	this	section	we’ll	start	out	by	setting	up	static	testing.	Next	we’ll	write	integration	tests	for	our	review	operations.
Then	we’ll	check	how	much	of	the	code	we’ve	tested	using	a	code	coverage	tool.	Next	we’ll	fill	in	some	of	the
coverage	gaps	with	more	integration	tests	and	unit	tests.	Finally,	we’ll	write	an	end-to-end	test.

Static	testing
If	you’re	jumping	in	here,		git	checkout	19_0.2.0		(tag	19_0.2.0,	or	compare	19...20)

Static	testing	is	done	through	linting,	a	type	of	static	code	analysis.	It’s	called	static	because,	unlike	the	tests	we	write
code	for,	no	code	is	being	run	during	static	testing—instead,	a	tool	analyzes	the	code	for	certain	types	of	mistakes
that	can	be	found	by	just	looking	at	the	code	and	not	running	it.	One	such	mistake	is	when	we	use	a	variable	without
declaring	it.	In	JavaScript,	the	main	tool	for	static	analysis	is	ESLint,	and	here’s	a	list	of	possible	rules—things	it	can
analyze	that	we	can	choose	to	disallow	in	our	code.

We	have		eslint		and		eslint-plugin-node		installed	as	dev	dependencies,	so	all	we	need	to	do	is	configure	ESLint:

	.eslintrc.js	

module.exports	=	{

		env:	{

				es6:	true,

				node:	true

		},

		extends:	'plugin:node/recommended',

		parserOptions:	{

				sourceType:	'module'

		}

}

	env		says	that	we’re	using	ES6	in	Node.js,		extends		says	to	use		eslint-plugin-node	’s	set	of	recommended	linting
rules,	and		sourceType:	'module'		means	that	we’re	using	modules.	We	can	add	an	npm	script	for	linting:

	package.json	

{

		...

		"scripts":	{

				...

				"lint":	"eslint	src/"

		}

}

When	we	try	it	out	(npm	run	lint),	we	get	errors	saying:

error		Import	and	export	declarations	are	not	supported	yet		node/no-unsupported-features/es-syntax

Chapter	11:	Server	Dev

294

https://github.com/GraphQLGuide/guide-api/tree/19_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/19_0.2.0...20_0.2.0
https://eslint.org/docs/about/
https://eslint.org/docs/rules/
https://github.com/GraphQLGuide/guide-api/blob/20_0.2.0/.eslintrc.js
https://github.com/GraphQLGuide/guide-api/compare/19_0.2.0...20_0.2.0

It’s	warning	us	that	using	the	keywords		import		and		export		in	our	code	won’t	work	because	it’s	not	supported	by
node.	Our	code	actually	does	work,	because	we’re	using	babel.	So	let’s	disable	this	rule	(the	name	of	the	rule	is
printed	at	the	end):

	.eslintrc.js	

module.exports	=	{

		...

		rules:	{

				'node/no-unsupported-features/es-syntax':	0

		}

}

Now	when	we	do		npm	run	lint	,	it	succeeds—no	errors	are	found.

A	common	practice	is	setting	up	linting	to	occur	as	a	pre-commit	hook—that	is,	a	command	that	will	automatically	be
run	whenever	we	enter		git	commit	,	and	if	the	command	fails,	the	commit	will	be	canceled.	The	easiest	way	to	set
this	up	is	with	husky,	one	of	our	dev	dependencies,	which	simply	uses	a		package.json		attribute:

	package.json	

{

		...

		"husky":	{

				"hooks":	{

						"pre-commit":	"npm	run	lint"

				}

		}

}

Now	if	we	commit,	we	see	that		eslint	src/		is	run	before	the	commit	happens:

$	git	commit	-m	'Set	up	linting'

husky	>	pre-commit	(node	v8.11.3)

>	guide-api@0.1.0	lint	/guide-api

>	eslint	src/

[20	bfe4bf1]	Set	up	linting

	2	files	changed,	21	insertions(+),	1	deletion(-)

	create	mode	100644	.eslintrc.js

Review	integration	tests
If	you’re	jumping	in	here,		git	checkout	20_0.2.0		(tag	20_0.2.0,	or	compare	20...21)

The	different	types	of	testing	are	basically	defined	by	how	much	is	mocked	 .	In	integration	tests,	we	usually	just
mock	network	requests.	The	main	type	of	network	request	our	server	makes	is	to	the	database,	so	we’ll	be	mocking
our	MongoDB	collection	methods.	We	also	won’t	need	our	tests	to	make	network	requests	to	the	GraphQL	server
because	Apollo	has		createTestClient()		which	allows	us	to	query	the	server	without	starting	the	server.	It	puts	our
queries	through	the	Apollo	Server	request	pipeline	as	if	they	were	HTTP	requests.

	createTestClient()		returns	an	object	with		query		and		mutate		functions,	which	each	take	a		GraphQLRequest		object:

	apollo-server-types	

export	interface	GraphQLRequest	{

		query?:	string;

		operationName?:	string;

		variables?:	VariableValues;

		extensions?:	Record<string,	any>;

		http?:	Pick<Request,	'url'	|	'method'	|	'headers'>;

Chapter	11:	Server	Dev

295

https://github.com/GraphQLGuide/guide-api/blob/20_0.2.0/.eslintrc.js
https://github.com/typicode/husky
https://github.com/GraphQLGuide/guide-api/compare/19_0.2.0...20_0.2.0
https://github.com/GraphQLGuide/guide-api/tree/20_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0
https://www.apollographql.com/docs/apollo-server/features/testing/#createtestclient
https://github.com/apollographql/apollo-server/blob/master/packages/apollo-server-types/src/index.ts

}

Usually	we	just	use	the		query		and		variables		properties,	but	we	can	also	use		http	,	for	instance	to	include	an
authorization	header:

const	{	query	}	=	createTestClient(server)

query({

		query:	gql`...`,

		http:	{

				headers:	{

						authorization:	`Bearer	${token}`

				}

		}

})

Then	the	server	would	run	our	context	function,	decode	the	auth	token,	and	add	the	user	doc	to	the	context	that	it
gives	to	resolvers.

	createTestClient()	’s	only	parameter	is	an	instance	of	Apollo	Server,	so	our	tests	will	need	one.	We	can’t	use	the	one
created	in		src/index.js		because	our	tests	will	need	to	be	able	to	modify	data	sources	and	context.	So	let’s	make	a
	createTestServer()		function.	And	let’s	create	a	new	file	that	exports	all	of	our	testing	helper	functions	and	data,	so
that	the	test	files	can	import	whatever	they	need	from	one	place:

	test/guide-test-utils.js	

import	{	ApolloServer	}	from	'apollo-server'

import	{	Reviews,	Users	}	from	'../src/data-sources/'

import	{

		typeDefs,

		resolvers,

		context	as	defaultContext,

		formatError

}	from	'../src/'

export	const	createTestServer	=	({	context	=	defaultContext	}	=	{})	=>	{

		const	reviews	=	new	Reviews({})

		const	users	=	new	Users({})

		const	server	=	new	ApolloServer({

				typeDefs,

				resolvers,

				dataSources:	()	=>	({	reviews,	users	}),

				context,

				formatError

		})

		return	{	server,	dataSources:	{	reviews,	users	}	}

}

export	{	createTestClient	}	from	'apollo-server-testing'

export	{	default	as	gql	}	from	'graphql-tag'

	createTestServer()		returns	both	the	server	instance	and	the	data	sources	(so	that	tests	can	spy	on	or	modify	data
source	functions).	In	order	for	the	above	code	to	work,	we	need	to	add	some	exports:

	src/data-sources/index.js	

...

export	{	Reviews,	Users,	Github	}

`src/index.js

Chapter	11:	Server	Dev

296

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/test/guide-test-utils.js
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0

...

export	{	typeDefs,	resolvers,	context,	formatError	}

Now	that	we’ve	got	our		guide-test-utils.js		file,	we	can	import	from	it	into	our	test	files.	It	would	be	nice	if	we	could
import	without	thinking	about	relative	paths,	as	if	it	were	a	node	module:

import	{

		createTestServer,

		createTestClient,

		gql

}	from	'guide-test-utils'

To	enable	this,	we	can	create	a	config	file:

	jest.config.js	

const	path	=	require('path')

module.exports	=	{

		moduleDirectories:	['node_modules',	path.join(__dirname,	'test')]

}

Jest	will	now	look	for	modules	both	in		node_modules/		and	in		test/	.	(Jest,	made	by	Facebook,	is	the	most	popular
JavaScript	testing	framework.)

While	it	will	run,	it	won’t	pass	linting,	which	we’ll	find	out	either	in	our	editor—if	ESLint	is	enabled—or	when	we	try	to
commit	and	it	fails:

husky	>	pre-commit	(node	v8.11.3)

>	guide-api@0.1.0	lint	/guide-api

>	eslint	src/

/guide-api/src/resolvers/Review.test.js

		6:8		error		"guide-test-utils"	is	not	found		node/no-missing-import

✖	1	problem	(1	error,	0	warnings)

ESLint	is	looking	in	our		node_modules/		to	make	sure	that	anything	we	import	is	there.	But	there	is	no
	node_modules/guide-test-utils/	,	so	it	gives	an	error.	If	we	look	at	the	documentation	for	the		node/no-missing-import	
rule,	we	learn	that	there’s	a	way	to	tell	it	to	look	in	additional	locations	for	modules—in	this	case,	we	want	it	to	look	in
the		./test		directory:

	.eslintrc.js	

module.exports	=	{

		...

		rules:	{

				...

				'node/no-missing-import':	[

						'error',

						{

								resolvePaths:	['./test']

						}

]

		}

}

Now	committing	or	doing		npm	run	lint		succeeds	 .

Chapter	11:	Server	Dev

297

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/jest.config.js
https://jestjs.io
https://github.com/mysticatea/eslint-plugin-node/blob/master/docs/rules/no-missing-import.md
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0

Let’s	move	on	to	writing	the	review	tests	themselves.	Since	the	entry	point	to	review	operations	and	most	of	the	logic
is	in	the	resolvers,	let’s	put	our	test	file	next	to	the		Review.js		resolvers	file,	adding		.test		to	the	filename:

	src/resolvers/Review.test.js	

import	{

		createTestServer,

		createTestClient,

		gql

}	from	'guide-test-utils'

test('something',	()	=>	{

		const	result	=	...

		expect(result).toSomething()

})

Jest	provides	a	set	of	global	functions,	including	the	basic	test	function		test()		(or		it()),	in	which	we	run	part	of	our
code	and	assert	something	about	the	result.	We	use		expect()		for	assertions,	which	is	followed	by	any	of	a	number	of
matcher	methods,	such	as:

expect(result).toBeTruthy()

expect(result).toBe('this	string')

expect(array).not.toContain(10)

expect(doSomething).toThrow('must	be	logged	in')

We’ll	write	two	tests,	one	for	each	review	operation	(reviews		query	and		createReview		mutation):

import	{

		createTestServer,

		createTestClient,

		gql

}	from	'guide-test-utils'

test('reviews',	()	=>	{

})

test('createReview',	()	=>	{

})

For	the	first,	we’ll	start	by	first	creating	a	test	server	and	then	a	test	client:

import	{

		createTestServer,

		createTestClient,

		gql

}	from	'guide-test-utils'

test('reviews',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	query	}	=	createTestClient(server)

		const	result	=	await	query({	query:	...	})

})

We	need	a	query	document	to	give	to		query()	.	To	try	to	cover	as	many	resolvers	as	possible,	let’s	select	all		Review	
and		User		fields	except		User.email		(it	requires	authentication,	which	we’ll	do	in	the	second	test).

const	REVIEWS	=	gql`

		query	{

				reviews	{

						id

Chapter	11:	Server	Dev

298

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/src/resolvers/Review.test.js
https://jestjs.io/docs/en/api#describename-fn
https://jestjs.io/docs/en/api#testname-fn-timeout
https://jestjs.io/docs/en/expect

						text

						stars

						author	{

								id

								firstName

								lastName

								username

								photo

								createdAt

								updatedAt

						}

						createdAt

						updatedAt

				}

		}

`

test('reviews',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	query	}	=	createTestClient(server)

		const	result	=	await	query({	query:	REVIEWS	})

})

This	test	will	send	the		REVIEWS		query	via	the	test	client	to	our	server.	But	before	we	make	an	assertion	and	run	our
code,	we	have	to	mock	the	database!	Specifically,	we	have	to	mock	the	collection	functions	that	will	be	called	when
our	query	is	run.	Looking	at		src/resolvers/Review.js	,	we	see	that		dataSources.reviews.all		and
	dataSources.users.findOneById		are	called.	They	both	call		this.collection.find().toArray()	,	so	we	need	to	mock
	.find().toArray()		for	both	collections,	as	well	as		this.collection.createIndex()	,	which	we	call	in	the		Users		data
source	constructor.

	test/guide-test-utils.js	

export	const	createTestServer	=	({	context	=	defaultContext	}	=	{})	=>	{

		const	reviews	=	new	Reviews({

				find:	()	=>	({

						toArray:	jest.fn().mockResolvedValue(mockReviews)

				})

		})

		const	users	=	new	Users({

				createIndex:	jest.fn(),

				find:	()	=>	({

						toArray:	jest.fn().mockResolvedValue(mockUsers)

				})

		})

		const	server	=	new	ApolloServer({

				dataSources:	()	=>	({	reviews,	users	}),

				...

		})

		...

}

We’ll	create	a	mock	function	using		jest.fn()	.	By	default	it	returns		undefined	,	which	works	for		createIndex()	,	but
for		find()		we	need	to	return	an	object	that	has	a		toArray()		method	that	returns	a	Promise	that	resolves	to	an	array
of	documents	 .	We’ll	also	need	to	create	the		mockReviews		and		mockUsers		constants:

import	{	ObjectId	}	from	'mongodb'

const	updatedAt	=	new	Date('2020-01-01')

export	const	mockUser	=	{

		_id:	ObjectId('5d24f846d2f8635086e55ed3'),

		firstName:	'First',

		lastName:	'Last',

Chapter	11:	Server	Dev

299

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/test/guide-test-utils.js
https://jestjs.io/docs/en/mock-function-api

		username:	'mockA',

		authId:	'mockA|1',

		email:	'mockA@gmail.com',

		updatedAt

}

const	mockUsers	=	[mockUser]

const	reviewA	=	{

		_id:	ObjectId('5ce6e47b5f97fe69e0d63479'),

		text:	'A+',

		stars:	5,

		updatedAt,

		authorId:	mockUser._id

}

const	reviewB	=	{

		_id:	ObjectId('5cf8add4c872001f31880a97'),

		text:	'Passable',

		stars:	3,

		updatedAt,

		authorId:	mockUser._id

}

const	mockReviews	=	[reviewA,	reviewB]

Now	our		'reviews'		test	should	return		reviewA		and		reviewB	,	both	with	author		mockUser	.	Let’s	complete	the	test
with	an	assertion:

test('reviews',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	query	}	=	createTestClient(server)

		const	result	=	await	query({	query:	REVIEWS	})

		expect(result).toMatchSnapshot()

})

To	run	the	test,	let’s	add	an	npm	script:

	package.json	

{	

		...

		"scripts":	{

				...

				"test":	"jest"				

		}

}

Now	when	we	do		npm	run	test		(or	just		npm	test),	Jest	will	find	all		*.test.js		files	and	run	the	tests	it	finds	inside
them.

Our	assertion		expect(result).toMatchSnapshot()		will	save	a	snapshot	(a	serialization	of	the	result,	saved	to	a	new
	__snapshots__/		directory).	Whenever	we	get	a	different	result	from	the	saved	snapshot,	the	test	will	fail,	and	we’ll
either	need	to	fix	the	code	or	(in	the	case	when	the	result	is	correctly	different)	tell	Jest	to	update	the	snapshot.

Snapshots	should	be	added	to	git.

$	npm	test

>	guide-api@0.1.0	test	/guide-api

>	jest

	PASS		src/resolvers/Review.test.js

		✓	reviews	(58ms)

	›	1	snapshot	written.

Chapter	11:	Server	Dev

300

https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0

		console.log	src/index.js:22

				GraphQL	server	running	at	http://localhost:4000/

Snapshot	Summary

	›	1	snapshot	written	from	1	test	suite.

Test	Suites:	1	passed,	1	total

Tests:							1	passed,	1	total

Snapshots:			1	written,	1	total

Time:								3.375s,	estimated	4s

Ran	all	test	suites.

Jest	did	not	exit	one	second	after	the	test	run	has	completed.

This	usually	means	that	there	are	asynchronous	operations	that	weren’t	stopped	in	your	tests.	Consider	running	

Jest	with	`--detectOpenHandles`	to	troubleshoot	this	issue.

To	terminate	the	command,	type		Ctrl-C	.

We	see	that	our	one	test	passes,	and	a	new	snapshot	is	written.	We	can	look	at	the	file	to	make	sure	it’s	correct:

	src/resolvers/__snapshots__/Review.test.js.snap	

//	Jest	Snapshot	v1,	https://goo.gl/fbAQLP

exports[`reviews	1`]	=	`

Object	{

		"data":	Object	{

				"reviews":	Array	[

						Object	{

								"author":	Object	{

										"createdAt":	1562703942000,

										"firstName":	"First",

										"id":	"5d24f846d2f8635086e55ed3",

										"lastName":	"Last",

										"photo":	"https://avatars.githubusercontent.com/u/1",

										"updatedAt":	1577836800000,

										"username":	"mockA",

								},

								"createdAt":	1558635643000,

								"id":	"5ce6e47b5f97fe69e0d63479",

								"stars":	5,

								"text":	"A+",

								"updatedAt":	1577836800000,

						},

						Object	{

								"author":	Object	{

										"createdAt":	1562703942000,

										"firstName":	"First",

										"id":	"5d24f846d2f8635086e55ed3",

										"lastName":	"Last",

										"photo":	"https://avatars.githubusercontent.com/u/1",

										"updatedAt":	1577836800000,

										"username":	"mockA",

								},

								"createdAt":	1559801300000,

								"id":	"5cf8add4c872001f31880a97",

								"stars":	3,

								"text":	"Passable",

								"updatedAt":	1577836800000,

						},

],

		},

		"errors":	undefined,

		"extensions":	undefined,

		"http":	Object	{

				"headers":	Headers	{

						Symbol(map):	Object	{},

				},

		},

}

`;

Chapter	11:	Server	Dev

301

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/src/resolvers/__snapshots__/Review.test.js.snap

That	looks	good!	We’ve	got	what	we	expected	in	the		"data"		result	attribute	and	nothing	in	the		"errors"		attribute.
However,	if	we	look	at	the	end	of	the	test	output,	we	see	a	problem:

Jest	did	not	exit	one	second	after	the	test	run	has	completed.

This	usually	means	that	there	are	asynchronous	operations	that	weren’t	stopped	in	your	tests.	Consider	running	

Jest	with	`--detectOpenHandles`	to	troubleshoot	this	issue.

It’s	saying	we’ve	started	code	running	that	hasn’t	stopped	running.	If	we	look	above	that,	we	see	this	output:

		console.log	src/index.js:22

				GraphQL	server	running	at	http://localhost:4000/

It	looks	like	our	non-test	server	is	running—that’s	the	running	code	that	Jest	is	warning	us	about.	So	we	need	to	edit
	src/index.js		to	not	start	the	server	during	tests.	Jest	sets		NODE_ENV		to		'test'	,	so	let’s	use	that:

	src/index.js	

const	start	=	()	=>	{

		server

				.listen({	port:	4000	})

				.then(({	url	})	=>	console.log(`GraphQL	server	running	at	${url}`))

}

if	(process.env.NODE_ENV	!==	'test')	{

		start()

}

Instead	of	starting	the	server	with		server.listen()		at	the	top	level,	we	put	it	in	a	function	and	only	call	it	when	we’re
not	testing.	However,	when	we	run		npm	test		again,	while	we	no	longer	get	the		console.log	,	we	still	get	the	warning,
which	means	there	must	be	more	code	that	we	start	running	at	the	top	level...

The	database	connection!	Let’s	put	that	in	a	function	as	well:

	src/db.js	

import	{	MongoClient	}	from	'mongodb'

export	let	db

const	URL	=	'mongodb://localhost:27017/guide'

export	const	connectToDB	=	()	=>	{

		const	client	=	new	MongoClient(URL,	{	useNewUrlParser:	true	})

		client.connect(e	=>	{

				if	(e)	{

						console.error(`Failed	to	connect	to	MongoDB	at	${URL}`,	e)

						return

				}

				db	=	client.db()

		})

}

And	we’ll	call	it	from		start()	.	We’ll	also	move		Github.startPolling()		from	the	top	level	of		src/data-
sources/index.js	:

	src/index.js	

import	dataSources,	{	Github	}	from	'./data-sources'

import	{	connectToDB	}	from	'./db'

const	start	=	()	=>	{

		connectToDB()

Chapter	11:	Server	Dev

302

https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...21_0.2.0

		Github.startPolling()

		server

				.listen({	port:	4000	})

				.then(({	url	})	=>	console.log(`GraphQL	server	running	at	${url}`))

}

if	(process.env.NODE_ENV	!==	'test')	{

		start()

}

Now		npm	test		completes	normally.	To	recap,	we	set	up	integration	tests	for	review	operations	by:

Creating	a	test	version	of	the	server.
Making	a	test	utilities	file	that	can	be	used	like	a	node	module.
Writing	a	test.
Mocking	MongoDB	collection	methods.
Preventing	long-running	server	code	from	starting	during	testing.

Lastly,	we	have	our	second	test	to	write—	'createReview'	:

	src/resolvers/Review.test.js	

test('createReview',	async	()	=>	{

		const	{	server	}	=	createTestServer({

				context:	()	=>	({	user:	mockUser	})

		})

		const	{	mutate	}	=	createTestClient(server)

		const	result	=	await	mutate({

				mutation:	CREATE_REVIEW,

				variables:	{	review:	{	text:	'test',	stars:	1	}	}

		})

		expect(result).toMatchSnapshot()

})

Similarly	to		'reviews'	,	we	create	a	test	server	and	client,	send	an	operation	via	the	test	client,	and	assert	the
response	matches	the	snapshot.	The	differences	are:

We	need	to	set	the	server’s	context	as	if	we’re	logged	in	as		mockUser		so	that	we	don’t	get	the		ForbiddenError	.
We	use		mutate()		instead	of		query()	,	and	provide	the		review		variable.

For	the	mutation,	we	have:

const	CREATE_REVIEW	=	gql`

		mutation	CreateReview($review:	CreateReviewInput!)	{

				createReview(review:	$review)	{

						id

						text

						stars

						author	{

								id

								email

						}

						createdAt

				}

		}

`

We	include		email	,	which	we’ll	have	access	to	because	we’re	logged	in	as		mockUser		and		mockUser		will	be	used	for
the	new	review’s		author		field.

The	one	thing	we	haven’t	done	yet	is	update	our	database	mock	functions.	It	looks	like	the	only	new	function	that	will
be	called	is		this.collection.insertOne()	,	which	is	used	in		src/data-sources/Reviews.js	:

Chapter	11:	Server	Dev

303

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/src/resolvers/Review.test.js

export	default	class	Reviews	extends	MongoDataSource	{

		...

		create(review)	{

				review.authorId	=	this.context.user._id

				review.updatedAt	=	new	Date()

				this.collection.insertOne(review)

				return	review

		}

}

The	only	thing	we	were	depending	on		insertOne()		doing	was	adding	an		_id		property,	so	let’s	mock	that:

	test/guide-test-utils.js	

export	const	createTestServer	=	({	context	=	defaultContext	}	=	{})	=>	{

		const	reviews	=	new	Reviews({

				find:	jest.fn(()	=>	({

						toArray:	jest.fn().mockResolvedValue(mockReviews)

				})),

				insertOne:	jest.fn(

						doc	=>	(doc._id	=	new	ObjectId('5cf8b6ff37568a1fa500ba4e'))

)

		})

		...

}

Now	when	we	run	the	tests,	we	see	that	two	are	passing,	and	one	new	snapshot	is	written:

$	npm	test

>	guide-api@0.1.0	test	/guide-api

>	jest

	PASS		src/resolvers/Review.test.js

		✓	reviews	(41ms)
		✓	createReview	(21ms)

	›	1	snapshot	written.

Snapshot	Summary

	›	1	snapshot	written	from	1	test	suite.

Test	Suites:	1	passed,	1	total

Tests:							2	passed,	2	total

Snapshots:			1	written,	1	passed,	2	total

Time:								3.745s

Ran	all	test	suites.

And	one	new	snapshot	is	written:

	src/resolvers/__snapshots__/Review.test.js.snap	

exports[`createReview	1`]	=	`

Object	{

		"data":	Object	{

				"createReview":	Object	{

						"author":	Object	{

								"email":	"mockA@gmail.com",

								"id":	"5d24f846d2f8635086e55ed3",

						},

						"createdAt":	1559803647000,

						"id":	"5cf8b6ff37568a1fa500ba4e",

						"stars":	1,

						"text":	"test",

				},

		},

		"errors":	undefined,

Chapter	11:	Server	Dev

304

https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/test/guide-test-utils.js
https://github.com/GraphQLGuide/guide-api/blob/21_0.2.0/src/resolvers/__snapshots__/Review.test.js.snap

		"extensions":	undefined,

		"http":	Object	{

				"headers":	Headers	{

						Symbol(map):	Object	{},

				},

		},

}

`;

...

Looks	good!	

Code	coverage
If	you’re	jumping	in	here,		git	checkout	21_0.2.0		(tag	21_0.2.0,	or	compare	21...22)

Jest	analyzes	code	coverage—how	much	of	our	code	gets	run	during	our	tests—with	the		--coverage		flag.	We	can
look	at	code	coverage	to	see	which	parts	of	the	code	aren’t	covered	by	tests,	so	that	we	know	what	our	new	tests
should	cover.

Let’s	update	our	test	script:

	package.json	

{

		...

		"scripts":	{

				...

				"test":	"jest	--coverage",

				"open-coverage":	"open	coverage/lcov-report/index.html"

		},

When		jest	--coverage		runs,	it	both	logs	statistics	and	updates	the	coverage	report,	which	is	located	in	the
	coverage/		directory.	We	can	now	do		npm	run	open-coverage		for	opening	the	HTML	report.	We	can	run	jest	without
coverage	with:

$	npx	jest

Or	to	keep	it	open,	re-running	tests	whenever	we	edit	our	code:

$	npx	jest	--watch

Or	to	keep	it	open	with	code	coverage,	one	of	these	commands:

$	npx	jest	--coverage	--watch

$	npm	test	--	--watch

	--		after	an	npm	script	tells	npm	to	apply	the	subsequent	arguments	to	the	script.

We	should	tell	git	to	ignore	the	generated		coverage/		report	directory:

	.gitignore	

node_modules/

dist/

.env

coverage/

Chapter	11:	Server	Dev

305

https://github.com/GraphQLGuide/guide-api/tree/21_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/20_0.2.0...22_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/21_0.2.0...22_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/21_0.2.0...22_0.2.0

And	we	need	to	tell	Jest	which	JavaScript	files	it	should	analyze	coverage	for,	using	the		collectCoverageFrom		config:

	jest.config.js	

module.exports	=	{

		moduleDirectories:	['node_modules',	path.join(__dirname,	'test')],

		collectCoverageFrom:	['src/**/*.js']

}

Here’s	the	new	output	of		npm	test	:

We	see	the	coverage	overall,	for	each	directory,	and	each	JS	file,	in	percentage	of	statements,	logic	branches,
functions,	and	lines.	To	see	which	lines	of	code	are	covered,	we	can	view	the	HTML	report:

$	npm	run	open-coverage

Chapter	11:	Server	Dev

306

https://github.com/GraphQLGuide/guide-api/compare/21_0.2.0...22_0.2.0

And	follow	links	to	a	particular	file	we’d	like	to	look	at,	like		src/index.js	:

The	red	highlighted	code	shows	what	wasn’t	run	during	the	test.	Anything	at	the	top	level	was	run,	like	the	imports,
	ApolloServer		instance	creation,	and	the	if	statement	condition,	but	the	body	of	the	if	statement—and	the	body	of	the
start	function,	which	wasn’t	called—wasn’t	run	and	thus	is	red.	The	highlighting	isn’t	perfect—notice	that		.listen		and
	.then		should	also	be	red	but	aren’t.

Chapter	11:	Server	Dev

307

If	we	want	to	make	sure	that	contributors	to	our	project	write	tests	that	cover	new	code,	we	can	set	a	minimum
coverage	threshold,	below	which	the	test	command	will	fail.	We	can	set	it	for	any	statistic—statements,	branches,
functions,	or	lines—and	either	globally	or	for	individual	files.	Let’s	set	a	global	statement	threshold	of	40%:

	jest.config.js	

module.exports	=	{

		moduleDirectories:	['node_modules',	path.join(__dirname,	'test')],

		collectCoverageFrom:	['src/**/*.js'],

		coverageThreshold:	{

				global:	{

						statements:	40

				}

		}

}

Now	the	test	will	fail	whenever	the	code	coverage	statement	ratio	is	below	40%.	We’re	currently	below	40%,	so	when
we	re-run		npm	test	,	it	fails:

User	integration	tests
If	you’re	jumping	in	here,		git	checkout	22_0.2.0		(tag	22_0.2.0,	or	compare	22...23)

Chapter	11:	Server	Dev

308

https://github.com/GraphQLGuide/guide-api/compare/21_0.2.0...22_0.2.0
https://github.com/GraphQLGuide/guide-api/tree/22_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/22_0.2.0...23_0.2.0

Let’s	try	to	meet	our	40%	coverage	threshold.	Looking	at		src/resolvers/User.js	,	we	can	see	that	our	queries	are	red:

This	makes	sense,	as	our	tests	haven’t	sent	any	user	queries—they’ve	just	selected		User		fields	in	review	operations.
Accordingly,	when	we	scroll	down,	we	see	the	only	covered	lines	are	for		User		field	resolvers:

Let’s	write	some	integration	tests	that	query	user	operations.	We’ll	start	with	the	same	imports	and	test	format	(one	for
each	operation)	as	we	did	with		Review.test.js	:

	src/resolvers/User.test.js	

import	{

Chapter	11:	Server	Dev

309

https://github.com/GraphQLGuide/guide-api/blob/23_0.2.0/src/resolvers/User.test.js

		createTestServer,

		createTestClient,

		gql,

		mockUser

}	from	'guide-test-utils'

test('me',	async	()	=>	{

		...

})

test('user',	async	()	=>	{

		...

})

test('searchUsers',	async	()	=>	{

		...

})

test('createUser',	async	()	=>	{

		...

})

For	the		me		test,	we	can	set	the		context		to	a	user	with	a	certain		_id	,	and	then	check	to	make	sure	the	result’s		id	
matches:

const	ME	=	gql`

		query	{

				me	{

						id

				}

		}

`

test('me',	async	()	=>	{

		const	{	server	}	=	createTestServer({

				context:	()	=>	({	user:	{	_id:	'itme'	}	})

		})

		const	{	query	}	=	createTestClient(server)

		const	result	=	await	query({	query:	ME	})

		expect(result.data.me.id).toEqual('itme')

})

We	don’t	need	to	worry	about	selecting	and	testing	other	fields,	as	we	know	they’ve	been	covered.

Next	is	the		user		query.	We	know	our	mock	users	collection	always	returns		mockUser	,	so	we’ll	query	for	that	user:

const	USER	=	gql`

		query	User($id:	ID!)	{

				user(id:	$id)	{

						id

				}

		}

`

test('user',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	query	}	=	createTestClient(server)

		const	id	=	mockUser._id.toString()

		const	result	=	await	query({

				query:	USER,

				variables:	{	id	}

		})

		expect(result.data.user.id).toEqual(id)

})

Chapter	11:	Server	Dev

310

For	the		searchUsers		test,	let’s	set	it	up	so	that	multiple	results	are	returned.	For	that,	we’ll	need	to	temporarily	change
the	mocked		users.find		function.	To	get	access	to	that	function,	we	need	to	get	the	dataSources	from
	createTestServer()	:

test('searchUsers',	async	()	=>	{

		const	userA	=	{	_id:	'A'	}

		const	userB	=	{	_id:	'B'	}

		const	{	server,	dataSources	}	=	createTestServer()

		dataSources.users.collection.find.mockReturnValueOnce({

				toArray:	jest.fn().mockResolvedValue([userA,	userB])

		})

	mockReturnValueOnce()		will	have		users.find		return	the	given	value	once	and	then	go	back	to	returning		[mockUser]	
as	it	was	before.	After	we	make	the	query,	we	can	also	test	to	see	what		users.find		was	called	with:

		expect(dataSources.users.collection.find).toHaveBeenCalledWith({

				$text:	{	$search:	'foo'	}

		})

All	together,	that’s:

const	SEARCH_USERS	=	gql`

		query	SearchUsers($term:	String!)	{

				searchUsers(term:	$term)	{

						...	on	User	{

								id

						}

				}

		}

`

test('searchUsers',	async	()	=>	{

		const	userA	=	{	_id:	'A'	}

		const	userB	=	{	_id:	'B'	}

		const	{	server,	dataSources	}	=	createTestServer()

		dataSources.users.collection.find.mockReturnValueOnce({

				toArray:	jest.fn().mockResolvedValue([userA,	userB])

		})

		const	{	query	}	=	createTestClient(server)

		const	result	=	await	query({

				query:	SEARCH_USERS,

				variables:	{	term:	'foo'	}

		})

		expect(dataSources.users.collection.find).toHaveBeenCalledWith({

				$text:	{	$search:	'foo'	}

		})

		expect(result.data.searchUsers[0].id).toEqual('A')

		expect(result.data.searchUsers[1].id).toEqual('B')

})

For	the	last	test,	our		createUser		mutation	will	be	calling		users.insertOne	,	which	we	haven’t	mocked	yet.	Let’s	reuse
the		insertOne		function	we	used	for	reviews:

	test/guide-test-utils.js	

const	insertOne	=	jest.fn(

		doc	=>	(doc._id	=	new	ObjectId('5cf8b6ff37568a1fa500ba4e'))

)

export	const	createTestServer	=	({	context	=	defaultContext	}	=	{})	=>	{

		const	reviews	=	new	Reviews({

Chapter	11:	Server	Dev

311

https://github.com/GraphQLGuide/guide-api/compare/22_0.2.0...23_0.2.0

				find:	jest.fn(()	=>	({

						toArray:	jest.fn().mockResolvedValue(mockReviews)

				})),

				insertOne

		})

		const	users	=	new	Users({

				createIndex:	jest.fn(),

				find:	jest.fn(()	=>	({

						toArray:	jest.fn().mockResolvedValue(mockUsers)

				})),

				insertOne

		})

		...

For	the	mutation	input,	let’s		pick		the	fields	from		mockUser	:

	src/resolvers/User.test.js	

import	{	pick	}	from	'lodash'

const	CREATE_USER	=	gql`

		mutation	CreateUser($user:	CreateUserInput!,	$secretKey:	String!)	{

				createUser(user:	$user,	secretKey:	$secretKey)	{

						id

				}

		}

`

test('createUser',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	mutate	}	=	createTestClient(server)

		const	user	=	pick(mockUser,	[

				'firstName',

				'lastName',

				'username',

				'email',

				'authId'

])

		const	result	=	await	mutate({

				mutation:	CREATE_USER,

				variables:	{

						user,

						secretKey:	process.env.SECRET_KEY

				}

		})

		expect(result).toMatchSnapshot()

})

Whenever	we’re	using	a	snapshot,	we	should	check	it	on	the	first	run	to	make	sure	it’s	correct.	If	we	run		npm	test	,
then	we	should	see	a	new	file:

	src/resolvers/__snapshots__/User.test.js.snap	

//	Jest	Snapshot	v1,	https://goo.gl/fbAQLP

exports[`createUser	1`]	=	`

Object	{

		"data":	Object	{

				"createUser":	Object	{

						"id":	"5cf8b6ff37568a1fa500ba4e",

				},

		},

		"errors":	undefined,

		"extensions":	undefined,

		"http":	Object	{

Chapter	11:	Server	Dev

312

https://github.com/GraphQLGuide/guide-api/blob/23_0.2.0/src/resolvers/User.test.js
https://github.com/GraphQLGuide/guide-api/blob/23_0.2.0/src/resolvers/__snapshots__/User.test.js.snap

				"headers":	Headers	{

						Symbol(map):	Object	{},

				},

		},

}

`;

Looks	good!	 	We	can	also	see	that	our	statement	coverage	is	above	the	40%	minimum,	so	our	tests	pass!

Unit	tests
If	you’re	jumping	in	here,		git	checkout	23_0.2.0		(tag	23_0.2.0,	or	compare	23...24)

We’ve	written	integration	tests	that	cover	most	of	our	queries	and	mutations.	If	we	want	a	higher	test	coverage,	we
could	write	more	integration	tests	with	different	arguments	or	mock	data	that	result	in	different	parts	of	the	code
getting	run.	We	could	also	write	unit	tests	that	cover	individual	functions.	In	this	section	we’ll	write	a	unit	test	that
covers	the		user		query.	As	we	can	see	in	the	coverage	report,	we’re	missing	three	lines:

Chapter	11:	Server	Dev

313

https://github.com/GraphQLGuide/guide-api/tree/23_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/23_0.2.0...24_0.2.0

Let’s	first	write	a	unit	test	that	triggers	the	invalid	ObjectId	error.	We	can	either	add	it	to		User.test.js		or	create
separate	files	for	unit	tests	named		File.unit.test.js	.	The	latter	has	the	benefit	of	smaller	files	and	we	can	run	all	the
unit	tests	together	with		npm	test	--	unit	.

An	alternative	file	structure	would	be	to	move	all	integration	tests	to	the		test/		directory	and	only	place	unit
tests	next	to	the	files	they’re	testing.	So		test/User.test.js		for	integration	and		src/resolvers/User.test.js		for
unit	testing		src/resolvers/User.js	.

Instead	of	using	the	test	server	and	client,	we	can	import	the	resolver	function	and	call	it	ourselves:

	src/resolvers/User.unit.test.js	

import	resolvers	from	'./User'

import	{	InputError	}	from	'../util/errors'

test('user	throws	InputError',	()	=>	{

		expect(()	=>

				resolvers.Query.user(

						null,

						{	id:	'invalid'	},

						{	dataSources:	{	users:	{	findOneById:	jest.fn()	}	}	}

)

).toThrow(InputError)

})

We	mock	the		dataSources.users.findOneById		function,	and	we	assert	that	an	instance	of		InputError		will	be	thrown.

However	if	we	want	to	fit	the	strict	definition	of	a	unit	test	that	says	everything	must	be	mocked,	we	need	to	mock
	ObjectId()	.	Since	it’s	imported	from	an	NPM	module,	we	can	use	the		jest.mock()		function,	which	mocks	the
module	for	all	the	tests	in	the	same	file:

jest.mock('mongodb',	()	=>	({

		ObjectId:	id	=>	{

				if	(id	===	'invalid')	{

Chapter	11:	Server	Dev

314

https://github.com/GraphQLGuide/guide-api/blob/24_0.2.0/src/resolvers/User.unit.test.js
https://jestjs.io/docs/en/jest-object#jestmockmodulename-factory-options

						throw	new	Error(

								'Argument	passed	in	must	be	a	single	String	of	12	bytes	or	a	string	of	24	hex	characters'

)

				}

		}

}))

Now	when		User.js		imports	the	function	(import	{	ObjectId	}	from	'mongodb'),	it	will	get	our	version	of	it.

For	further	examples	of		jest.mock()	,	check	out	the	SQL	testing	section	later	on	in	this	chapter.

When	we	re-run		npm	test		and	refresh	the	coverage	report,	we	see	that	the	statements	coverage	has	gone	up	from
16/25	to	18/25:

There’s	one	statement	left	in	this	function:	the		throw	error		line.	For	that,	we	need	to	have
	dataSources.users.findOneById()		throw	a	different	error	and	make	sure	that		resolvers.Query.user()		throws	the	same
error.

	src/resolvers/User.unit.test.js	

import	resolvers	from	'./User'

import	{	InputError	}	from	'../util/errors'

test('user	throws	data	source	errors',	()	=>	{

		const	MOCK_MONGO_ERROR	=	'Unable	to	connect	to	DB'

		expect(()	=>

				resolvers.Query.user(

						null,

						{	id:	mockMongoId	},

						{

								dataSources:	{

										users:	{

												findOneById:	()	=>	{

														throw	new	Error(MOCK_MONGO_ERROR)

												}

Chapter	11:	Server	Dev

315

https://github.com/GraphQLGuide/guide-api/blob/24_0.2.0/src/resolvers/User.unit.test.js

										}

								}

						}

)

).toThrow(MOCK_MONGO_ERROR)

})

Now	the		user		query	is	completely	green.	And	we	could	continue	writing	unit	tests	for	more	functions	or	files,	either
until	we	covered	the	most	important	pieces	of	logic,	or	until	we	met	our	overall	desired	test	coverage	percentage.

End-to-end	tests
If	you’re	jumping	in	here,		git	checkout	24_0.2.0		(tag	24_0.2.0,	or	compare	24...25)

The	final	type	of	testing	is	end-to-end,	or	e2e.	In	backend	e2e	testing,	we	start	the	server	and	database,	and	then	we
test	by	sending	HTTP	requests	to	the	server.	So	our	tests	will	look	something	like	this:

beforeAll(startE2EServer)

afterAll(stopE2EServer)

test('query	A',	()	=>	{

		const	result	=	makeHttpRequest(queryA)

		expect(result).toMatchSnapshot()

})

Let’s	start	by	writing	the		startE2EServer()		helper.	We	want	it	to	look	like	this:

	test/guide-test-utils.js	

export	const	startE2EServer	=	()	=>	{

		//	start	server	and	connect	to	db

Chapter	11:	Server	Dev

316

https://github.com/GraphQLGuide/guide-api/tree/24_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/24_0.2.0...25_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/24_0.2.0...25_0.2.0

		return	{

				stop:	()	=>	//	stops	server	and	db	client

				request:	()	=>	//	send	http	request	to	server

		}

}

It	returns	the		stop()		and		request()		functions	for	the	tests	to	use.	We	can	fill	in	the	first	comment:

import	{	server	}	from	'../src/'

import	{	connectToDB	}	from	'../src/db'

export	const	startE2EServer	=	async	()	=>	{

		//	start	server	and	connect	to	db

		const	e2eServer	=	await	server.listen({	port:	0	})

		await	connectToDB()

		return	{

				stop:	()	=>	//	stops	server	and	db	client

				request:	()	=>	//	send	http	request	to	server

		}

}

	{	port:	0	}		uses	any	available	port,	which	we	do	because	the	default	port	(4000)	will	be	in	use	if	our	dev	server	is
running	while	we	run	our	tests.	In	order	to		await		our	call	to		connectToDB()	,	we	need	to	make	it	async	instead	of
callback-based:

	src/db.js	

export	let	db

export	const	connectToDB	=	async	()	=>	{

		const	client	=	new	MongoClient(URL,	{	useNewUrlParser:	true	})

		await	client.connect()

		db	=	client.db()

		return	client

}

We	also	need	to		return	client		so	that	we	can	close	the	connection	when	testing	is	done.	For	stopping	the	server,
there	is	a		e2eServer.server.close	,	but	it’s	callback-based.	We	can	use	node’s		promisify()		to	turn	it	into	a	Promise
that	we	can		await	:

	test/guide-test-utils.js	

import	{	promisify	}	from	'util'

export	const	startE2EServer	=	async	()	=>	{

		const	e2eServer	=	await	server.listen({	port:	0	})

		const	dbClient	=	await	connectToDB()

		const	stopServer	=	promisify(e2eServer.server.close.bind(e2eServer.server))

		return	{

				stop:	async	()	=>	{

						await	stopServer()

						await	dbClient.close()

				}

				request:	()	=>	//	send	http	request	to	server

		}

}

We	also	use	bind	to	maintain	the	function’s		this	.

We	can	make	our	function	run	faster	by	performing	startup	and	stopping	in	parallel	using		Promise.all()	:

Chapter	11:	Server	Dev

317

https://github.com/GraphQLGuide/guide-api/compare/24_0.2.0...25_0.2.0
https://nodejs.org/api/util.html#util_util_promisify_original
https://github.com/GraphQLGuide/guide-api/compare/24_0.2.0...25_0.2.0
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/bind
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

export	const	startE2EServer	=	async	()	=>	{

		const	[e2eServer,	dbClient]	=	await	Promise.all([

				server.listen({	port:	0	}),

				connectToDB()

])

		const	stopServer	=	promisify(e2eServer.server.close.bind(e2eServer.server))

		return	{

				stop:	()	=>	Promise.all([stopServer(),	dbClient.close()]),

				request:	()	=>	//	send	http	request	to	server

		}

}

Lastly,	we	can	send	HTTP	requests	to	the	server	using	Apollo	Link.		apollo-link-http		has	the	basic		HttpLink		and
	apollo-link		has		execute()	,	a	function	that	sends	GraphQL	operations	over	a	link,	and		toPromise()	,	which
converts	the	Observable	that		execute()		returns	into	a	Promise.	All	together,	that’s:

	test/guide-test-utils.js	

import	{	promisify	}	from	'util'

import	{	HttpLink	}	from	'apollo-link-http'

import	fetch	from	'node-fetch'

import	{	execute,	toPromise	}	from	'apollo-link'

import	{	server	}	from	'../src/'

import	{	connectToDB	}	from	'../src/db'

export	const	startE2EServer	=	async	()	=>	{

		const	[e2eServer,	dbClient]	=	await	Promise.all([

				server.listen({	port:	0	}),

				connectToDB()

])

		const	stopServer	=	promisify(e2eServer.server.close.bind(e2eServer.server))

		const	link	=	new	HttpLink({

				uri:	e2eServer.url,

				fetch

		})

		return	{

				stop:	()	=>	Promise.all([stopServer(),	dbClient.close()]),

				request:	operation	=>	toPromise(execute(link,	operation))

		}

}

We	also	need		src/index.js		to	add		server		to	its	exports:

	src/index.js	

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context,

		formatError

})

...

export	{	server,	typeDefs,	resolvers,	context,	formatError	}

Now	we	can	write	our	e2e	test:

	test/e2e.test.js	

Chapter	11:	Server	Dev

318

https://www.apollographql.com/docs/link/links/http/
https://github.com/apollographql/apollo-link/blob/70f342380117fdfdbb5bad0987cd120689659ef2/packages/apollo-link/src/link.ts#L126-L138
https://github.com/GraphQLGuide/guide-api/compare/24_0.2.0...25_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/24_0.2.0...25_0.2.0
https://github.com/GraphQLGuide/guide-api/blob/25_0.2.0/test/e2e.test.js

import	{	gql,	startE2EServer	}	from	'guide-test-utils'

let	stop,	request

beforeAll(async	()	=>	{

		const	server	=	await	startE2EServer()

		stop	=	server.stop

		request	=	server.request

})

afterAll(()	=>	stop())

const	HELLO	=	gql`

		query	{

				hello

		}

`

test('hello',	async	()	=>	{

		const	result	=	await	request({	query:	HELLO	})

		expect(result).toMatchSnapshot()

})

We	start	the	server	in		beforeAll()		and	stop	it	in		afterAll()	.	Then	we	create	our	query	document,	which	we	send	to
the	server	using		request()		in	our	one	test.	After	we	run	the	test,	we	check	the	snapshot:

	test/__snapshots__/e2e.test.js.snap	

exports[`hello	1`]	=	`

Object	{

		"data":	Object	{

				"hello":	"ɍ ɏ Ɏ ",

		},

}

`;

Production
Once	our	GraphQL	server	code	works	and	we	want	others	(or	our	client	code)	to	use	it,	we	need	to	put	it	into
production.	This	section	contains	the	basic	steps:

Deploying	our	code
Setting	up	our	databases
Gathering	analytics
Tracking	errors

And	in	the	last	part	of	the	chapter,	Extended	topics,	we	cover	additional	topics	relevant	to	production,	including
security	and	performance.

Deployment
Options
Deploying
Environment	variables

Options

Chapter	11:	Server	Dev

319

https://github.com/GraphQLGuide/guide-api/blob/25_0.2.0/test/__snapshots__/e2e.test.js.snap

For	our	GraphQL	API	to	be	accessible,	we	need	our	code	to	run	on	a	server	that	is	publicly	addressable—i.e.,	it	can
be	reached	via	a	public	IP	address.	Our	dev	computer	usually	can’t	be	reached	because	it	has	a	local	(non-public)	IP
address	(often	starting	with		192.168.*.*),	and	the	router	that	connects	us	to	the	internet	(which	does	have	a	public
IP)	usually	doesn’t	respond	to	HTTP	requests.	While	we	could	set	the	router	up	to	forward	requests	to	our	dev
computer,	we	then	would	have	to	leave	our	computer	there	and	powered	on,	as	well	as	do	a	number	of	other	things	to
keep	it	working	(like	DDNS).	Given	the	trouble	and	unreliability	of	that	solution,	we	usually	run	our	server	code	on	a
different	computer—a	production	server—that’s	been	built,	set	up,	and	maintained	for	that	purpose.

The	deployment	process	is	copying	the	latest	version	of	our	code	to	the	production	server	and	running	it.	There	are
four	main	types	of	production	servers	we	can	use:

On-prem:	In	on	premises,	we	buy	our	own	server,	plug	it	into	a	power	outlet,	connect	it	to	the	internet,	and	then
maintain	it	ourselves.
IaaS:	In	infrastructure	as	a	service,	a	company	(like	Amazon	with	its	EC2	service)	houses	and	maintains	the
physical	servers,	and	we	choose	the	operating	system.	We	connect	to	the	operating	system	over	SSH	to	get	a
command	prompt	and	then	install	Node,	copy	our	code	to	the	machine,	and	run	it.
PaaS:	Platform	as	a	service	is	like	IaaS,	except	in	addition	to	maintaining	the	physical	servers,	the	company	also
maintains	the	operating	system	and	software	server.	For	example,	a	Node	PaaS	company	would	install	and
update	Node.js,	and	we	would	send	them	our	code,	and	they	would	run	it	with	their	version	of	Node.
FaaS:	Function	as	a	service	(also	known	as	serverless)	is	like	PaaS,	except	instead	of	sending	them	Node	server
code	(which	runs	continuously	and	responds	to	any	path	/	route),	we	send	them	individual	JavaScript	functions
and	configure	which	route	triggers	which	function.	Then,	when	we	get	HTTP	requests,	their	server	runs	the	right
function.	The	function	returns	the	response,	which	their	server	forwards	to	the	client.	Once	the	function	returns,
our	code	stops	running—with	FaaS,	we	don’t	have	a	continuously	running	server	process.

These	options	appear	in:

decreasing	order	of	complexity	to	use.	It’s	most	difficult	to	run	our	own	server,	and	it’s	easiest	to	write	and	upload
a	single	function.
increasing	time	order:

1970s:	On-prem	was	the	original	type	of	server	since	the	beginning	of	the	internet.
2006:	Amazon	Web	Services	(AWS)	came	out	with	EC2,	the	most	popular	IaaS.
2009:	Heroku,	which	popularized	PaaS,	publicly	launched.
2014:	AWS	came	out	with	Lambda,	the	most	popular	FaaS.

Currently,	PaaS	seems	to	be	the	most	popular	option	in	modern	web	development.	However,	FaaS	is	rising	and	may
eclipse	PaaS.	Notably,	the	most	popular	PaaS	in	the	Node	community	(Vercel	Now,	formerly	Zeit	Now),	switched	to
FaaS.	While	FaaS	might	be	better	for	many	applications,	there	are	some	disadvantages:

No	continuous	server	process:	When	we	have	a	process	(as	we	do	with	on-prem,	IaaS,	and	PaaS),	we	can	do
things	like:

Store	data	in	memory	between	requests.	The	alternative	that	usually	suffices	is	using	an	independent
memory	store,	like	a	Redis	server,	which	adds	a	small	network	latency	(only	~0.2ms	if	it’s	inside	the	same
AWS	Availability	Zone).
Open	and	maintain	a	WebSocket	connection.	However,	some	FaaS	providers	have	added	the	ability	to	use
WebSockets:	At	the	end	of	2018,	AWS	added	support	for	WebSockets	to	its	API	Gateway,	which	can	call	a
Lambda	function	when	each	message	arrives	over	the	socket.

Database	limitations:	Since	there’s	no	continuous	server	process,	our	database	client	library	can’t	maintain	a
pool	of	connections	for	our	requests	to	go	out	on;	instead,	each	function	makes	its	own	connection.	So	the
database	has	to	be	able	to	accept	many	connections	over	SSL.
Latency:	When	there’s	not	an	existing	server	process,	the	FaaS	provider	has	to	start	a	new	process	(with	a	copy
of	our	code	and	npm	packages)	to	handle	an	incoming	request,	and	that	takes	time,	which	increases	the	latency
(i.e.,	total	response	time	of	the	server).	For	example,	Lambda	usually	takes	under	500ms	to	create	a	new
instance	to	handle	a	request	(also	called	a	cold	start).	Once	the	function	returns,	the	instance	continues	running

Chapter	11:	Server	Dev

320

https://en.wikipedia.org/wiki/Dynamic_DNS
https://vercel.com/home

and	immediately	handles	the	next	request	that	arrives.	If	there	are	no	requests	for	about	ten	seconds,	it	shuts
down,	and	the	next	request	is	subject	to	the	500ms	instance	startup	latency.	Also,	if	there’s	an	existing	instance
handling	a	request	and	a	second	request	arrives	while	the	existing	instance	is	busy,	a	second	instance	is	cold-
started.
Resource	limits:	FaaS	providers	usually	limit	how	much	memory	and	CPU	can	be	used	and	how	long	the
function	can	run.	One	of	the	more	flexible	providers	is	Lambda.	By	default,	it	limits	memory	and	duration	to	128
MB	and	3	seconds.	The	limits	can	be	raised	to	a	maximum	3,008	MB	and	15	minutes,	which	costs	more.	CPU
speed	scales	linearly	with	memory	size.

An	example	of	an	application	that	isn’t	well-suited	to	FaaS	is	a	Meteor	app,	which:

Keeps	a	WebSocket	open	to	every	client.
Stores	in	memory	a	cache	of	each	client’s	data.
Can	use	a	lot	of	CPU	to	determine	what	data	updates	to	send	to	each	client.

Apollo	Server	doesn’t	yet	support	GraphQL	subscriptions	on	Lambda.		aws-lambda-graphql		is	a	different	GraphQL
server	that	does	support	subscriptions	on	Lambda.	Aside	from	subscriptions,	FaaS	is	a	great	fit	for	GraphQL	because:

GraphQL	only	has	a	single	route,	so	we	only	need	one	function.
The	only	thing	stored	in	memory	between	requests	is	the	data	source	cache,	and	that’s	easy	to	swap	out	with	a
Redis	cache.

Since	our	app	uses	subscriptions,	let’s	use	Heroku,	a	PaaS	that	supports	Node.

It’s	worth	noting	that	another	option	would	be	to	split	our	application	layer	between	two	servers:

One	that	handles	Queries	and	Mutations	over	HTTP,	hosted	on	a	FaaS.
One	that	handles	Subscriptions	over	WebSockets,	hosted	on	a	PaaS.

The	former	could	publish	subscription	events	to	Redis,	which	the	latter	could	subscribe	to.

Deploying

If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...26)

In	this	section	we’ll	deploy	our	server	to	the	Heroku	PaaS,	see	how	it	breaks,	and	then	fix	it	 .

We	start	by	creating	an	account.	Then	we	do	the	following	steps:

$	cd	guide-api/

$	brew	install	heroku/brew/heroku

$	heroku	login

$	heroku	create

$	git	push	heroku	25:master

$	heroku	open

1.	 	brew	install	heroku/brew/heroku	—Install	the		heroku		command-line	tool.
2.	 	heroku	login	—Log	in	using	the	account	we	just	created.
3.	 	heroku	create	—Create	a	new	Heroku	app.	This	registers	our	server	with	Heroku	and	reserves	a	name	(which	is

used	in	the	deployed	URL:		https://app-name.herokuapp.com/).	It	also	adds	a	Git	remote	named		heroku	.
4.	 	git	push	heroku	25:master	—Git	push	to	the	master	branch	of	the	Heroku	remote.	When	Heroku	receives	the

updated	code,	it	builds	and	runs	the	server.	This	command	assumes	we	currently	have	branch	25	checked	out	on
our	machine.	If	we	were	on		master	,	we	could	just	run		git	push	heroku	master	.

5.	 	heroku	open	—Open	the	deployed	URL	in	the	browser.

On	the	page	that’s	opened	(https://app-name.herokuapp.com/),	we	see	“Application	error,”	which	we	can	investigate
by	viewing	the	logs:

Chapter	11:	Server	Dev

321

https://www.meteor.com
https://github.com/apollographql/apollo-server/issues/2129
https://github.com/michalkvasnicak/aws-lambda-graphql
https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...26_0.1.0
https://signup.heroku.com/dc

$	heroku	logs

This	prints	a	lot	of	logs,	including:

2019-10-30T12:50:33.923678+00:00	heroku[web.1]:	Error	R10	(Boot	timeout)	->	Web	process	failed	to	bind	to	$PORT

	within	60	seconds	of	launch

2019-10-30T12:50:33.951435+00:00	heroku[web.1]:	Stopping	process	with	SIGKILL

When	Heroku	runs	our	code,	it	provides	a		PORT		environment	variable	and	waits	for	our	code	to	start	a	server	on	that
port.	If	our	code	doesn’t	do	so	within	a	minute,	Heroku	kills	the	process.	We’re	running	our	server	on	port	4000,	so	it
killed	us.	

To	resolve	this	problem,	let’s	update	our	code	to	use		PORT	:

	src/index.js	

server

		.listen({	port:	process.env.PORT	||	4000	})

		.then(({	url	})	=>	console.log(`GraphQL	server	running	at	${url}`))

We	fall	back	to		4000		in	development,	where	there	is	no		PORT		environment	variable.	Now	to	test,	we	can	run		heroku
logs	--tail		in	one	terminal	(--tail		keeps	the	command	running,	displaying	log	lines	in	real	time)	and	deploy	in
another.	Since	the	deployment	process	for	Heroku	is		git	push	,	we	have	to	create	a	new	commit,	so	that	the	updated
code	is	part	of	the	push.

$	git	add	src/index.js

$	git	commit	-m	'Listen	on	process.env.PORT	in	production'

$	git	push	heroku	25:master

After	the	last	command,	we	should	start	seeing	log	lines	like	this	(plus	timestamps)	in	the	first	terminal:

$	heroku	logs	--tail

...

app[api]:	Build	started	by	user		loren@graphql.guide

heroku[web.1]:	State	changed	from	crashed	to	starting

app[api]:	Release	v4	created	by	user		loren@graphql.guide

app[api]:	Deploy	4f2d2e92	by	user		loren@graphql.guide

app[api]:	Build	succeeded

heroku[web.1]:	Starting	process	with	command	`npm	start`

app[web.1]:	

app[web.1]:	>	guide-api@0.1.0	start	/app

app[web.1]:	>	node	dist/index.js

app[web.1]:	

app[web.1]:	GraphQL	server	running	at	http://localhost:7668/

app[web.1]:	(node:23)	UnhandledPromiseRejectionWarning:	MongoNetworkError:	failed	to	connect	to	server	[localho

st:27017]	on	first	connect	[Error:	connect	ECONNREFUSED	127.0.0.1:27017

heroku[web.1]:	State	changed	from	starting	to	up

app[web.1]:	Error:	GraphQL	Error	(Code:	401):	{"response":{"message":"Bad	credentials","documentation_url":"htt

ps://developer.github.com/v4","status":401},"request":{"query":"\nquery	GuideStars	{\n		repository(owner:	\"Gra

phQLGuide\",	name:	\"guide\")	{\n				stargazers	{\n						totalCount\n				}\n		}\n}\n"}}

Heroku	didn’t	kill	us!	

We	can	kill	the	logs	process	by	hitting		Ctrl-C	.

The	label		[web.1]		identifies	which	dyno	(Heroku’s	term	for	a	container)	the	log	comes	from.	By	default,	our	app	only
has	one	dyno,	but	we	could	scale	up	to	multiple	if	we	wanted.	The	lines	labeled		heroku		are	the	dyno’s	general	state
changes:

heroku[web.1]:	State	changed	from	crashed	to	starting

Chapter	11:	Server	Dev

322

https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...26_0.2.0

heroku[web.1]:	Starting	process	with	command	`npm	start`

heroku[web.1]:	State	changed	from	starting	to	up

The	lines	labeled		app		are	more	granular	and	include	all	the	output	from	our	server	process.	The	last	two	lines	are
errors	that	we’ll	fix	in	the	next	two	sections:

app[web.1]:	(node:23)	UnhandledPromiseRejectionWarning:	MongoNetworkError:	failed	to	connect	to	server	[localho

st:27017]	on	first	connect	[Error:	connect	ECONNREFUSED	127.0.0.1:27017

app[web.1]:	Error:	GraphQL	Error	(Code:	401):	{"response":{"message":"Bad	credentials","documentation_url":"htt

ps://developer.github.com/v4","status":401},"request":{"query":"\nquery	GuideStars	{\n		repository(owner:	\"Gra

phQLGuide\",	name:	\"guide\")	{\n				stargazers	{\n						totalCount\n				}\n		}\n}\n"}}

Environment	variables

If	you’re	jumping	in	here,		git	checkout	26_0.1.0		(tag	26_0.1.0).

There	are	a	couple	outstanding	errors	with	our	deployment.	Let’s	look	at	this	one:

app[web.1]:	Error:	GraphQL	Error	(Code:	401):	{"response":{"message":"Bad	credentials","documentation_url":"htt

ps://developer.github.com/v4","status":401},"request":{"query":"\nquery	GuideStars	{\n		repository(owner:	\"Gra

phQLGuide\",	name:	\"guide\")	{\n				stargazers	{\n						totalCount\n				}\n		}\n}\n"}}

It’s	an	error	response	from	our		GuideStars		query	which	our	server	is	sending	to	GitHub’s	API.	The	error	message	is
	Bad	credentials	.	Credentials	are	provided	in	the	authorization	header:

	src/data-sources/Github.js	

const	githubAPI	=	new	GraphQLClient('https://api.github.com/graphql',	{

		headers:	{

				authorization:	`bearer	${process.env.GITHUB_TOKEN}`

		}

})

The	problem	is	the		GITHUB_TOKEN		environment	variable	(env	var)	isn’t	defined,	because	our		.env		file	isn’t	in	Git,
which	means	Heroku	didn’t	get	a	copy	of	the	file	when	we	did		git	push	.	To	set	environment	variables,	PaaS	and
FaaS	providers	have	a	web	UI	and/or	command-line	tool.	Heroku	has	both—let’s	fix	our	problem	with	its	command-
line	tool:

$	heroku	config:set	GITHUB_TOKEN=...

Setting	GITHUB_TOKEN	and	restarting	⬢	graphql-guide...	done,	v5
GITHUB_TOKEN:	...

Replace		...		with	the	value	from	our		.env		file.

Then,	Heroku	restarts	the	server	to	provide	the	new	environment	variable.	We	can	now	see	with		heroku	logs		that	the
	Bad	credentials		error	doesn’t	appear	after	the	restart.

We	need	to	also	set	our	other	environment	variable	from		.env	:

$	heroku	config:set	SECRET_KEY=...

Database	hosting
MongoDB	hosting
Redis	hosting

Chapter	11:	Server	Dev

323

https://github.com/GraphQLGuide/guide-api/tree/26_0.1.0
https://github.com/GraphQLGuide/guide-api/blob/26_0.2.0/src/data-sources/Github.js

Redis	PubSub
Redis	caching

MongoDB	hosting

If	you’re	jumping	in	here,		git	checkout	26_0.1.0		(tag	26_0.1.0,	or	compare	26...27)

Our	last	error	is:

app[web.1]:	(node:23)	UnhandledPromiseRejectionWarning:	MongoNetworkError:	failed	to	connect	to	server	[localho

st:27017]	on	first	connect	[Error:	connect	ECONNREFUSED	127.0.0.1:27017

The	error	is	coming	from	MongoDB,	which	we’re	setting	up	with:

	src/db.js	

const	URL	=	'mongodb://localhost:27017/guide'

export	const	connectToDB	=	async	()	=>	{

		const	client	=	new	MongoClient(URL,	{	useNewUrlParser:	true	})

		await	client.connect()

		db	=	client.db()

		return	client

}

In	production,		localhost		is	our	Heroku	container,	which	doesn’t	have	a	MongoDB	database	server	running	on	it.	We
need	a	place	to	host	our	database,	and	then	we	can	use	that	URL	instead	of		mongodb://localhost:27017/guide	.

We	have	similar	options	to	our	Node	deployment	options:	on-prem,	IaaS,	and	DBaaS	(similar	to	PaaS).	Most	people
choose	DBaaS	because	it	requires	the	least	amount	of	effort.	With	on-prem,	we’d	have	to	house	the	machines,	and
with	IaaS,	we’d	have	to	configure	and	manage	the	OS	and	database	software	ourselves.	MongoDB,	Inc.	runs	their
own	DBaaS	called	Atlas.

Let’s	use	the	Atlas	free	plan	to	get	a	production	MongoDB	server.	During	setup,	we	have	a	choice	of	which	cloud
provider	we	want	our	database	to	be	hosted	on:	AWS,	Google	Cloud	Platform,	or	Microsoft	Azure.	Within	the	cloud
provider,	we	also	need	to	choose	a	region:

Chapter	11:	Server	Dev

324

https://github.com/GraphQLGuide/guide-api/tree/26_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/26_0.1.0...27_0.1.0
https://github.com/GraphQLGuide/guide-api/blob/26_0.2.0/src/db.js
https://www.mongodb.com/cloud/atlas

As	discussed	in	the	Latency	background	section,	we	want	to	pick	the	provider	and	region	closest	to	our	Heroku
GraphQL	server	so	that	our	GraphQL	server	can	reach	the	database	quickly.

Here	are	all	the	Heroku	regions:

$	heroku	regions

ID									Location																	Runtime

─────────		───────────────────────		──────────────

eu									Europe																			Common	Runtime

us									United	States												Common	Runtime

dublin					Dublin,	Ireland										Private	Spaces

frankfurt		Frankfurt,	Germany							Private	Spaces

oregon					Oregon,	United	States				Private	Spaces

sydney					Sydney,	Australia								Private	Spaces

tokyo						Tokyo,	Japan													Private	Spaces

virginia			Virginia,	United	States		Private	Spaces

Our	server	is	in	the	default	region,		us	.	We	can	look	up	more	information	about		us		using	Heroku’s	API:

$	curl	-n	-X	GET	https://api.heroku.com/regions/us	-H	"Accept:	application/vnd.heroku+json;	version=3"

{

		"country":"United	States",

		"created_at":"2012-11-21T20:44:16Z",

		"description":"United	States",

		"id":"59accabd-516d-4f0e-83e6-6e3757701145",

		"locale":"Virginia",

		"name":"us",

		"private_capable":false,

Chapter	11:	Server	Dev

325

		"provider":{

				"name":"amazon-web-services",

				"region":"us-east-1"

		},

		"updated_at":"2016-08-09T22:03:28Z"

}

Under	the		provider		attribute,	we	can	see	that	the	Heroku		us		region	is	hosted	on	AWS’s		us-east-1		region.	So	let’s
pick		AWS		and		us-east-1		for	our	Atlas	database	hosting	location.	Now	it	will	take	less	than	a	millisecond	for	our
GraphQL	server	to	talk	to	our	database.

After	a	few	minutes,	our	cluster	has	been	created,	and	we	can	click	the	“Connect”	button:

The	first	step	is	“Whitelist	your	connection	IP	address.”	IP	safelisting	(formerly	known	as	“whitelisting”)	only	allows
certain	IP	addresses	to	connect	to	the	database.	The	IP	address	we	want	to	be	able	to	connect	to	the	database	is	the
IP	of	our	GraphQL	server.	However,	our	Heroku	dynos	have	different	IPs,	and	the	IPs	of		us-east-1		change	over
time.	And,	even	if	they	were	static,	it	wouldn’t	be	very	secure	to	list	them,	as	an	attacker	could	rent	a	machine	in		us-

Chapter	11:	Server	Dev

326

https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

east-1		to	run	their	code	on.	As	an	alternative,	we	could	use	a	Heroku	add-on	to	provide	a	static	outbound	IP	address
for	all	of	our	dynos,	but,	for	now	let’s	go	the	easy	and	less	secure	route	of	safelisting	all	IP	addresses.	Use		0.0.0.0/0	
to	denote	the	range	of	all	addresses.

This	issue	isn’t	specific	to	Heroku	or	MongoDB—it	applies	to	any	database	that’s	used	by	any	server	platform
with	shared	IP	addresses.

Next	we’ll	create	a	username	and	password.	On	the	“Choose	a	connection	method”	step,	we	choose	“Connect	your
application”	and	copy	the	connection	string,	which	looks	like	this:

mongodb+srv://<username>:<password>@cluster0-9ofk6.mongodb.net/test?retryWrites=true&w=majority

The		cluster0-*****.mongodb.net		domain	is	the	domain	of	our	new	MongoDB	cluster,	which	can	contain	multiple
databases.	The		/test?		part	determines	the	default	database.	Let’s	change	ours	to		/guide?	.	We	also	need	to
replace		<username>		and		<password>		with	the	user	we	created.

Then	we	can	set	our	URL	as	an	environment	variable:

$	heroku	config:set	MONGO_URL="mongodb+srv://***:***@cluster0-*****.mongodb.net/guide?retryWrites=true&w=majori

ty"

And	finally,	we	can	reference	it	in	the	code:

	src/db.js	

const	URL	=	process.env.MONGO_URL	||	'mongodb://localhost:27017/guide'

At	this	point,	our	new	database	is	empty.	We	can	either	recreate	our	user	document	using	Compass	or	run	this
command	to	copy	all	our	users	and	reviews	from	our	local	database	to	the	production	database:

	mongodump	--archive	--uri	"mongodb://localhost:27017/guide"	|	mongorestore	--archive	--uri	"mongodb+srv://..."	

Replace		mongodb+srv://...		with	your	URL.

After	we	commit	and	push	to	Heroku,	we	can	see	our	server	is	error-free!	

$	heroku	logs

heroku[web.1]:	Starting	process	with	command	`npm	start`

app[web.1]:	

app[web.1]:	>	guide-api@0.1.0	start	/app

app[web.1]:	>	node	dist/index.js

app[web.1]:	

app[web.1]:	GraphQL	server	running	at	http://localhost:33029/

heroku[web.1]:	State	changed	from	starting	to	up

Redis	hosting

Background:	Redis

If	you’re	jumping	in	here,		git	checkout	27_0.1.0		(tag	27_0.1.0,	or	compare	27...28)

There	are	two	parts	of	our	app	that	are	only	meant	to	run	in	development,	and	we	need	to	change	for	production:

Apollo	Server’s	included		PubSub		implementation,	which	we	use	for	subscriptions.
Apollo	Server’s	default	cache,	which	is	used	by	data	sources.

Both	of	these	things	were	designed	to	work	when	the	server	runs	as	a	single	continuous	process.	In	production,	there
are	usually	multiple	processes/containers/servers,	PaaS	containers	are	subject	to	being	restarted,	and	FaaS	definitely
isn’t	continuous	 .

Chapter	11:	Server	Dev

327

https://elements.heroku.com/addons/categories/network
https://github.com/GraphQLGuide/guide-api/compare/26_0.2.0...27_0.2.0
https://github.com/GraphQLGuide/guide-api/tree/27_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/27_0.1.0...28_0.1.0

To	get	ready	for	production,	let’s	use	a		PubSub		implementation	and	cache	library	that	were	designed	for	Redis,	the
most	popular	caching	(in-memory)	database.

Redis	PubSub

Our	current		PubSub		comes	from		apollo-server	:

	src/util/pubsub.js	

import	{	PubSub	}	from	'apollo-server'

export	const	pubsub	=	new	PubSub()

There	are	many		PubSub		implementations	for	different	databases	and	queues	(see	Apollo	docs	>	Subscriptions	>
PubSub	Implementations).	We’ll	use		RedisPubSub		from		graphql-redis-subscriptions		when	we’re	in	production:

import	{	PubSub	}	from	'apollo-server'

import	{	RedisPubSub	}	from	'graphql-redis-subscriptions'

import	{	getRedisClient	}	from	'./redis'

const	inProduction	=	process.env.NODE_ENV	===	'production'

const	productionPubSub	=	()	=>	new	RedisPubSub({

		publisher:	getRedisClient(),

		subscriber:	getRedisClient()

})

export	const	pubsub	=	inProduction	?	productionPubSub()	:	new	PubSub()

We	have	the	same	line	checking		NODE_ENV		in		formatError.js	,	so	let’s	deduplicate	by	adding	a	new	file:

	src/env.js	

export	const	inProduction	=	process.env.NODE_ENV	===	'production'

	src/formatError.js	

import	{	inProduction	}	from	'./env'

	src/util/pubsub.js	

import	{	inProduction	}	from	'../env'

The	one	piece	we	haven’t	seen	yet	is		getRedisClient	:

	src/util/redis.js	

import	Redis	from	'ioredis'

const	{	REDIS_HOST,	REDIS_PORT,	REDIS_PASSWORD	}	=	process.env

const	options	=	{

		host:	REDIS_HOST,

		port:	REDIS_PORT,

		password:	REDIS_PASSWORD,

		retryStrategy:	times	=>	Math.min(times	*	50,	1000)

}

export	const	getRedisClient	=	()	=>	new	Redis(options)

Chapter	11:	Server	Dev

328

https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
https://www.apollographql.com/docs/apollo-server/data/subscriptions/#pubsub-implementations
https://github.com/davidyaha/graphql-redis-subscriptions
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0

We	use	our	preferred	Redis	client	library,		ioredis	.	The		retryStrategy		function	returns	how	long	to	wait	(in
milliseconds)	before	trying	to	reconnect	to	the	server	when	the	connection	is	broken.

We	need	a	public	Redis	server	to	connect	to.	For	that,	we’ll	use	Redis	Labs,	the	sponsor	of	Redis.	They	have	a
DBaaS,	and	it	includes	a	free	30MB	tier	we	can	use.	During	sign-up,	we	have	to	choose	a	cloud	provider	and	region
(we’ll	use	AWS	and	us-east-1,	since	that’s	where	our	GraphQL	server	is	hosted),	as	well	as	an	eviction	policy:
	allkeys-lfu	.	An	eviction	policy	determines	which	keys	get	deleted	when	the	30MB	of	memory	is	full,	and		lfu	
stands	for	least	frequently	used.

Once	we’ve	signed	up,	we’ll	have	connection	info	like	this:

	.env	

REDIS_HOST=redis-10042.c12.us-east-1-4.ec2.cloud.redislabs.com

REDIS_PORT=10042

REDIS_PASSWORD=abracadabra

Once	the	info	is	added	to	our		.env		file,	our		getRedisClient()		function	(and	our	pubsub	system)	should	start
working.

We	can	check	to	make	sure	it’s	connecting	to	the	right	Redis	server	by	turning	on	debug	output:	in	the		dev	
script	in	our		package.json	,	add		DEBUG=ioredis:*		before		babel-node	src/index.js	.

We	can	also	test	our	new	Redis-backed	pubsub	by	making	a	subscription	in	Playground,	unstarring	and	starring	the
repo	on	GitHub,	and	confirming	that	two	events	appear:

Chapter	11:	Server	Dev

329

https://www.npmjs.com/package/ioredis
https://redislabs.com/redis-enterprise-cloud/essentials-pricing/
https://github.com/GraphQLGuide/guide

Redis	caching

Apollo	Server’s	default	cache	for	data	sources	is	an	in-memory	LRU	cache	(LRU	means	that	when	the	cache	is	full,
the	least	recently	used	data	gets	evicted).	To	ensure	our	data	source	classes	across	multiple	containers	have	the
same	cached	data,	we’ll	switch	to	a	Redis	cache.	The	'apollo-server-cache-redis'	library	provides		RedisCache	:

	src/util/redis.js	

import	Redis	from	'ioredis'

import	{	RedisCache	}	from	'apollo-server-cache-redis'

const	{	REDIS_HOST,	REDIS_PORT,	REDIS_PASSWORD	}	=	process.env

const	options	=	{

		host:	REDIS_HOST,

		port:	REDIS_PORT,

		password:	REDIS_PASSWORD,

		retryStrategy:	times	=>	Math.min(times	*	50,	1000)

}

export	const	getRedisClient	=	()	=>	new	Redis(options)

export	const	cache	=	new	RedisCache(options)

export	const	USER_TTL	=	{	ttl:	60	*	60	}	//	hour

We	added	the		cache		and		USER_TTL		exports.	Now	we	can	add		cache		to	the		ApolloServer		constructor:

	src/index.js	

import	{	cache	}	from	'./util/redis'

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context,

		formatError,

		cache

})

To	use	caching,	we	have	to	set	a	TTL	(time	to	live)	with	our	calls	to		findOneById	.	This	argument	denotes	how	many
seconds	an	object	will	be	kept	in	the	cache,	during	which	calls	to		findOneById		with	the	same	ID	will	return	the	cached
object	instead	of	querying	the	database.

We	choose	a	TTL	based	on	our	app	requirements	and	how	often	our	objects	change.	Our	user	documents	rarely
change,	and	it	wouldn’t	be	a	big	deal	for	one	to	be	less	than	an	hour	out	of	date	after	a	change,	so	we	can	set	the	TTL
for	user	documents	to	an	hour	(60	*	60	seconds).	We’re	not	currently	using		findOneById		for	reviews,	but	if	we	did,	we
might	use	a	lower	TTL—maybe	a	minute—if	we	want	users	to	be	able	to	edit	their	reviews	and	see	those	changes
reflected	in	the	app	sooner.

Now	let’s	add		USER_TTL		to	our		User		and		Review		resolvers:

	src/resolvers/User.js	

import	{	USER_TTL	}	from	'../util/redis'

export	default	{

		Query:	{

				me:	...

				user:	(_,	{	id	},	{	dataSources	})	=>	{

						try	{

								return	dataSources.users.findOneById(ObjectId(id),	USER_TTL)

						}	catch	(error)	{

								if	(error.message	===	OBJECT_ID_ERROR)	{

Chapter	11:	Server	Dev

330

https://www.npmjs.com/package/apollo-server-cache-redis
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0

										throw	new	InputError({	id:	'not	a	valid	Mongo	ObjectId'	})

								}	else	{

										throw	error

								}

						}

				},

				searchUsers:	...

		},

		...

}

	src/resolvers/Review.js	

import	{	USER_TTL	}	from	'../util/redis'

export	default	{

		Query:	{

				reviews:	...

		},

		Review:	{

				id:	...

				author:	(review,	_,	{	dataSources	})	=>

						dataSources.users.findOneById(review.authorId,	USER_TTL),

				fullReview:	async	(review,	_,	{	dataSources	})	=>	{

						const	author	=	await	dataSources.users.findOneById(

								review.authorId,

								USER_TTL

)

						return	`${author.firstName}	${author.lastName}	gave	${review.stars}	stars,	saying:	"${review.text}"`

				},

				createdAt:	...

		},

		...

}

Now	after	we	make	a	query	like		{	reviews	{	fullReview	}	}	,	we	should	be	able	to	see	a	user	object	stored	in	Redis.
To	view	the	database’s	contents,	we	can	use	the	command	line	(brew	install	redis		and	then		redis-cli	-h)	or	a
GUI	like	Medis:

The	cache	key	has	the	format		mongo-[collection]-[id]	,	and	the	value	is	a	string,	formatted	by	Medis	as	JSON.	We
can	also	see	the	remaining	TTL	on	the	bottom	right.

Finally,	let’s	get	Redis	working	in	production.	We	update	our	environment	variables	on	Heroku	with:

$	heroku	config:set	\

REDIS_HOST=redis-10042.c12.us-east-1-4.ec2.cloud.redislabs.com	\

REDIS_PORT=10042	\

Chapter	11:	Server	Dev

331

https://github.com/GraphQLGuide/guide-api/compare/27_0.2.0...28_0.2.0
http://getmedis.com/

REDIS_PASSWORD=abracadabra

And	we	push	the	latest	code:

$	git	commit	-am	'Add	Redis	pubsub	and	caching'

$	git	push	heroku	27:master

We’ll	learn	in	the	next	section	how	to	query	our	production	API.	For	now,	we	can	test	our	Redis	in	production	by
deleting	the		mongo-users-foo		key,	making	the	same		{	reviews	{	fullReview	}	}		query,	and	then	refreshing	Medis	to
ensure	the	key	has	been	recreated.

Querying	in	production

If	you’re	jumping	in	here,		git	checkout	28_0.1.0		(tag	28_0.1.0).

Now	when	we	visit	our		app-name.herokuapp.com	,	instead	of	“Application	error”	we	see:

GET	query	missing.

Usually	GraphQL	requests	are	sent	by	POST,	but	Apollo	Server	also	supports	receiving	GET	requests.	The	browser
is	making	a		GET	/		request	when	we	load	the	page,	but	the	format	that	Apollo	supports	is		GET	/?query=X	.	Let’s	test	it
with	the		{	hello	}		query:

	app-name.herokuapp.com/?query={hello}	

This	method	of	querying	our	production	server	works,	but	it	becomes	inconvenient	if	queries	are	large	or	use
variables,	and	we	can’t	add	an	authorization	header.	The	method	we	were	using	before,	GraphQL	Playground,	is
disabled	by	default	in	production.	However,	we	can	use	the	Playground	app	(download	the	latest		.dmg		or		.exe		file)
to	query	any	GraphQL	API.	First,	we	select	“URL	ENDPOINT”	and	enter	our	production	URL:

Chapter	11:	Server	Dev

332

https://github.com/GraphQLGuide/guide-api/tree/28_0.1.0
https://graphql-guide.herokuapp.com/?query={hello}
https://github.com/prisma-labs/graphql-playground/releases

And	then	we	query:

While	the	query	returns	a	response,	we	see	the	“Server	cannot	be	reached”	error.	Query	autocompletion	doesn’t
work,	and	the	schema	tab	doesn’t	load.	These	issues	occur	because	introspection—the	queries	that	return	the
schema—is	disabled	by	default	in	production	in	order	to	obscure	private	APIs.

Private	APIs	are	meant	to	be	used	only	by	the	company’s	own	applications,	versus	public	APIs	like	the	GitHub
API	that	are	meant	to	be	used	by	third	parties.

If	we	were	publishing	a	public	API	that	we	wanted	third-party	apps	to	query,	we	would	want	to	enable	at	least
introspection	(and	probably	Playground	as	well)	to	make	it	easier	for	the	third-party	developers	to	query	our	API.

We	can	enable	both	introspection	and	Playground	in	production	by	adding	the	last	two	options	below:

	src/index.js	

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context,

		formatError,

		introspection:	true,

		playground:	true

})

Chapter	11:	Server	Dev

333

https://developer.github.com/v4/

$	git	add	src/index.js

$	git	commit	-m	'Enable	introspection	and	Playground'

$	git	push	heroku	26:master

Now	we	can	view	the	schema	in	the	Playground	app,	and	if	we	visit	our	index	URL,	the	Playground	website	will	load:

	app-name.herokuapp.com/	

If	we	want	to	undo	the	change,	we	can	do:

$	git	reset	HEAD^

$	git	checkout	--	src/index.js

$	git	push	heroku	26:master	-f

We	need	the		-f		(force	push).	A	normal	push	will	fail	because	the		heroku		remote’s		master		branch	is	in	a	different
state	from	our	branch		26		(heroku		still	has	the	“Enable	introspection	and	Playground”	commit	as	the	branch	tip).

In	summary,	the	ways	we	can	interactively	query	our	production	GraphQL	server	are:

	GET	/?query=X	

Playground	app	without	introspection
Playground	app	with	introspection	(the	server	must	have	introspection	enabled)
Playground	website,	if	the	server	has	it	enabled

And	we	can,	of	course,	continue	to	query	it	with	POST	requests	on	the	command	line	or	in	code.

Analytics
If	you’re	jumping	in	here,		git	checkout	28_0.1.0		(tag	28_0.1.0).

There	are	different	types	of	server	analytics	that	can	be	useful	to	track	and	a	variety	of	tools	that	gather	and	display
data.	In	this	section,	we’ll	cover	a	few	of	each.

The	types	of	analytics	can	be	split	into	two	categories:	those	at	the	operating	system	(OS)	level,	and	those	at	the	code
level.

At	the	OS	level,	there	are:

Memory	usage
CPU	usage
Request	statistics,	which	include:

Rate	(e.g.	1000	requests	received	per	second)
Response	times	(e.g.	95%	of	responses	are	sent	within	100ms	of	receiving	the	request)
Error	rates	(e.g.,	1%	of	responses	have	an	HTTP	code	in	the	500-599	range)

The	code	level	can	also	measure	things	based	on	details	in	the	code:	for	instance,	Express	route	names	or	GraphQL
field	usage.	A	popular	application	performance	management	(APM)	tool	that	can	do	code-level	measurement	is	[New
Relic],	which	has	an	npm	library	that	tracks	requests	by	route	name	for	a	list	of	supported	frameworks	like	Express.	It
also	can	monitor	the	performance	of	calls	to	several	different	databases,	and	it	provides	functions	for	custom
instrumentation/metrics.

The	main	APM	tool	for	GraphQL	servers	is	Apollo’s	Graph	Manager,	which	tracks	the	request	statistics	listed	above,
as	well	as:

Queries	received
Fields	selected
Resolver	timelines

Chapter	11:	Server	Dev

334

https://graphql-guide.herokuapp.com/
https://github.com/GraphQLGuide/guide-api/tree/28_0.1.0
https://en.wikipedia.org/wiki/Express.js
https://docs.newrelic.com/docs/agents/nodejs-agent/getting-started/compatibility-requirements-nodejs-agent

Clients
Deprecated	field	usage
GraphQL	errors

For	memory	and	CPU	usage,	we	could	either	use	Heroku’s	built-in	metrics	or	New	Relic.	However,	these	OS-level
metrics	are	becoming	less	important,	given	the	prevalence	of	autoscaling	(where	the	PaaS	automatically	adds	more
containers	when	under	a	high	load)	and	serverless	(where	we	usually	don’t	have	to	think	about	memory	and	CPU).

For	the	rest	of	the	metrics,	let’s	set	up	Graph	Manager.	First,	we	sign	up,	and	then	we’re	given	an	API	key	to	set	for
the		ENGINE_API_KEY		env	variable:

	.env	

ENGINE_API_KEY=service:guide-api:*****

We	now	start	our	server	with		npm	run	dev	.	Once	it	has	finished	starting	up,	we	run	this	command	in	a	new	terminal:

$	npx	apollo	service:push	--endpoint="http://localhost:4000"

This	command	sends	Apollo	our	schema,	which	is	used	for	GraphQL	analytics	and	other	Graph	Manager	features	like
schema	change	validation.	When	we	change	our	schema,	we	need	to	re-run	the	command.	Usually	this	is	done
automatically	as	part	of	continuous	integration	(CircleCI	example).

Now	we	can	make	queries	in	Playground,	reload	Graph	Manager,	select	“Metrics”	from	the	menu,	and	see	server
analytics!

If	we	only	want	to	see	production	analytics,	we	can	remove		ENGINE_API_KEY		from		.env		and	set	it	on	Heroku:

$	heroku	config:set	ENGINE_API_KEY="service:guide-api:*****"

Here’s	an	example	metrics	dashboard:

We	see:

Chapter	11:	Server	Dev

335

https://devcenter.heroku.com/articles/metrics#metrics-gathered-for-all-dynos
https://engine.apollographql.com/signup
https://www.apollographql.com/docs/graph-manager/schema-registry/#registering-a-schema-via-continuous-delivery
https://engine.apollographql.com/

A	low	total	request	rate	of	0.094	rpm	(requests	per	minute).	The	operation	with	the	highest	request	rate	(0.083
rpm)	begins	with		fragment	FullType	,	and	it	has	120	total	requests,	which	we	can	see	on	the	right	in	the	Filters
sidebar.
A	low	p95	service	time	of	17.7ms,	which	means	95%	of	requests	are	responded	to	within	17.7ms.
A	high	error	rate	of	92.65%.	Most	of	the	errors	come	from	the		fragment	FullType		operation,	which	is	sent	by
Playground	to	request	the	schema	(and	fails	because	introspection	is	disabled	on	this	production	server).
The	request	rate	over	time,	and	after	we	scroll	down,	request	latency	over	time	and	request	latency	distribution.

We	can	also	see	how	difficult	it	is	to	differentiate	unnamed	queries—for	instance,	the	four	different		searchUsers	
queries.	To	see	which	query	has	the	second-slowest	service	time,	we’d	need	to	select	it	and	then	click	on	the
“Operation”	tab:

The	“Traces”	tab	shows	us	the	timeline	of	when	resolvers	are	called	and	how	long	they	take	to	complete.	Here’s	a
	reviews		query	and	its	trace:

{

		reviews	{

								text

				stars

				author	{

						firstName

				}

		}

}

Chapter	11:	Server	Dev

336

The		reviews		resolver	fetches	the	list	of	reviews,	which	takes	3.57ms,	and	then	Apollo	Server	calls		Review.*		field
resolvers,	starting	with	the	first	review	(reviews.0		in	the	trace),	and	ending	with		reviews.11	,	which	is	expanded	so
that	we	can	see	the	timing	of	the	field	resolvers.		Review.text		and		Review.stars		return	immediately,	since	they’re	just
fields	on	the	review	object,	but		Review.author		requires	a	database	lookup.	That	lookup	is	actually	done	in	a	single
query	for	all	reviews	0–11,	as	all	the	reviews	have	the	same	author	and	our	datasource	uses	Dataloader,	which
deduplicates	the	12	identical	author	queries.	The	query	takes	2.76ms,	after	which	the		User.firstName		resolver
returns	immediately,	and	the	entire	query	response	is	ready	to	send	to	the	client.

The	Filters	sidebar	lets	us	filter	by	time	range	or	by	operation,	but	we	can	also	filter	by	client	type	and	version.	To	do
that,	we	select	“Clients”	from	the	left	sidebar.	Now	clients	are	listed	on	the	left	half	of	the	page.	Currently	we	only	see
one	labeled	“Unidentified	clients”	and	“All	versions.”	That’s	because	none	of	our	clients	have	identified	themselves	yet.
They	can	do	so	by	setting	two	headers,		apollographql-client-name		(like	“webapp”,	“iOS-app”,	“marketing-script”,	etc.)
and		apollographql-client-version		(like		0.1.0	,		v2	,	etc.).

Let’s	open	the	HTTP	headers	section	of	Playground	and	enter	these:

{

		"apollographql-client-name":"playground-test",

		"apollographql-client-version":"0.1.0"

}

When	using	Apollo	Client,	we	can	use	the		name		and		version		constructor	options:		new	ApolloClient({	link,
cache,	name:	'web',	version:	'1.0'	})	.

Then,	if	we	run	a	query,	change	the	version,	run	more	queries,	and	refresh	Graph	Manager,	we’ll	see	the	new	client
type	with	two	versions:

Chapter	11:	Server	Dev

337

Selecting	a	version	and	then	an	operation	on	the	right	takes	us	to	the	metrics	page	of	that	query	for	that	client	version.
We	can	also	look	at	other	operations	used	by	that	client	in	the	Filters	sidebar.

Error	reporting
If	you’re	jumping	in	here,		git	checkout	28_0.1.0		(tag	28_0.1.0,	or	compare	28...29)

In	this	section	we’ll	look	at	what	kind	of	error	reporting	Graph	Manager	covers,	and	then	we’ll	look	at	a	dedicated	error
reporting	service.

In	the	last	section	we	set	up	Apollo’s	Graph	Manager	and	looked	at	its	analytics.	The	one	tab	of	the	Metrics	page	we
didn’t	get	to	is	the	Errors	tab:

The	general	errors	page	(without	an	operation	selected)	shows	a	timeline	of	total	error	count,	followed	by	a	list	of	all
errors	within	the	current	time	range,	grouped	by	where	they	occurred—either	in	a	specific	resolver,	like	the
	user.email		errors	at	the	bottom,	or	before	the	server	starts	calling	resolvers	(labeled	as	“outside	of	the	GraphQL

Chapter	11:	Server	Dev

338

https://github.com/GraphQLGuide/guide-api/tree/28_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/28_0.1.0...29_0.1.0

context”	above).	The	latter	category	often	includes	failures	parsing	or	validating	the	request’s	operation.	In	this
example,	the	validation	fails	because	the	operation	includes	a		__schema		root	Query	field,	but	the	field	is	not	in	the
schema	because	introspection	is	turned	off.

We	can	expand	the	instances	links	to	get	a	list	of	times	and	operations	in	which	the	error	occurred:

And	when	we	have	an	operation	selected,	the	Errors	tab	only	shows	us	errors	that	occurred	during	the	execution	of
that	operation.

There	are	a	few	features	that	Graph	Manager	doesn’t	have	that	would	be	useful:

Stack	traces
The	contents	of	the		extensions		field	of	the	GraphQL	error	(above	we	only	see	the		message		field)
The	ability	to	attach	further	information,	like	the	current	user
The	ability	to	ignore	errors	or	mark	them	as	fixed
Team	features	like	the	ability	to	attach	notes	or	assign	errors	to	people
The	ability	to	search	through	the	errors

There	are	a	few	error-tracking	services	that	provide	these	features.	We’ll	set	up	Sentry—one	of	the	most	popular	ones
—but	setting	up	another	service	would	work	similarly.

First	we	create	an	account,	and	then	we	create	our	first	Sentry	project,	choosing	Node.js	as	the	project	type.	We’re
given	a	statement	like		Sentry.init({	dsn:	'https:://...'	})		with	our	new	project’s	ID	filled	in,	which	we	paste	into
our	code:

	src/formatError.js	

import	*	as	Sentry	from	'@sentry/node'

Sentry.init({

		dsn:	'https://ceb14feec00b4c49bebd10a9674bb68d@sentry.io/5168151'

})

Now	Sentry	automatically	gathers	uncaught	errors	like	this	one:

Sentry.init({

		dsn:	'https://ceb14feec00b4c49bebd10a9674bb68d@sentry.io/5168151'

})

myUndefinedFunction()

Within	seconds	of		npm	run	dev	,	we	should	see	a	new	error	in	our	Sentry	dashboard:

Chapter	11:	Server	Dev

339

https://sentry.io/
https://sentry.io/signup/
https://github.com/GraphQLGuide/guide-api/compare/28_0.2.0...29_0.2.0

We	see	the	time,	error	message,	stack	trace,	and	line	of	code.	And	if	the	same	error	happens	again,	it	will	be	grouped
with	this	one	so	that	we	can	see	the	total	number	of	occurrences	and	graph	occurrences	over	time.

This	is	all	really	useful,	but	the	issue	is	that	Apollo	Server	catches	all	errors	that	occur	during	GraphQL	requests,
which	is	where	most	of	our	errors	will	occur.	Since	Sentry	is	only	gathering	uncaught	errors,	it	misses	most	of	our
errors.	To	tell	Sentry	about	those	errors,	we	can	use	one	of	two		ApolloServer()		options:

	formatError		function
	plugins		array	with	a	new	plugin	we	write

The	first	is	simpler,	and	we’re	already	using	it:

	src/index.js	

import	formatError	from	'./formatError'

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context,

		formatError,

		cache

})

	src/formatError.js	

export	default	error	=>	{

		if	(inProduction)	{

				//	send	error	to	tracking	service

		}	else	{

				console.log(error)

				console.log(get(error,	'extensions.exception.stacktrace'))

		}

Chapter	11:	Server	Dev

340

https://github.com/GraphQLGuide/guide-api/blob/28_0.2.0/src/index.js
https://github.com/GraphQLGuide/guide-api/compare/28_0.2.0...29_0.2.0

		const	name	=	get(error,	'extensions.exception.name')	||	''

		if	(name.startsWith('Mongo'))	{

				return	new	InternalServerError()

		}	else	{

				return	error

		}

}

We’re	currently	using	the		formatError()		function	to	log	errors	in	development	and	mask	errors	involving	MongoDB.
We	can	call		Sentry.captureException()		to	tell	Sentry	about	errors:

import	get	from	'lodash/get'

import	*	as	Sentry	from	'@sentry/node'

import	{	AuthenticationError,	ForbiddenError	}	from	'apollo-server'

import	{	InternalServerError,	InputError	}	from	'./util/errors'

const	NORMAL_ERRORS	=	[AuthenticationError,	ForbiddenError,	InputError]

const	NORMAL_CODES	=	['GRAPHQL_VALIDATION_FAILED']

const	shouldReport	=	e	=>

		!NORMAL_ERRORS.includes(e.originalError)	&&

		!NORMAL_CODES.includes(get(e,	'extensions.code'))

export	default	error	=>	{

		if	(inProduction)	{

				if	(shouldReport(error))	{

						Sentry.captureException(error.originalError)

				}

		}	else	{

				console.log(error)

				console.log(get(error,	'extensions.exception.stacktrace'))

		}

		...

}

The		error		the	function	receives	is	the	GraphQL	error	that’s	included	in	the	response	to	the	client.	To	get	the	Node.js
error	object	(which	is	what	Sentry	expects),	we	do		error.originalError	.	We	also	use		shouldReport()		to	avoid
reporting	normal	errors,	like	auth	and	query	format	errors,	since	we	don’t	need	to	track	and	fix	them.

If	we	had	a	public	API,	we	might	want	to	track	query-parsing	errors	in	case	we	find	that	developers	consistently
make	certain	mistakes,	in	which	case	we	could	try	to	improve	our	schema	or	documentation.

To	test,	we	can	run		NODE_ENV=production	npm	run	dev		and	add	an	error	to		Query.hello	:

	src/resolvers/index.js	

const	resolvers	=	{

		Query:	{

				hello:	()	=>	'ɍ ɏ Ɏ '	&&	myUndefinedFunction(),

				isoString:	(_,	{	date	})	=>	date.toISOString()

		}

}

Chapter	11:	Server	Dev

341

https://github.com/GraphQLGuide/guide-api/compare/28_0.2.0...29_0.2.0

We	can	see	the	error	message	is	the	same,	but	the	new	entry	shows	a	different	function	and	file:
	hello(resolvers:index)	.

If	we	want	to	track	more	information	in	Sentry,	like	details	about	the	request	and	context	(such	as	the	current	user),
then	we	need	to	use	a	plugin	instead	of		formatError	.	We	use	the		plugins		option:

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

		context,

		formatError,

		cache,

		plugins:	[sentryPlugin]

})

And	we	create		sentryPlugin		according	to	the	plugin	docs,	defining	the		didEncounterErrors()		method	and	using
	Sentry.withScope()	.

One	last	thing	to	consider	is	that	if	our	server	is	not	running—if	something	happened	to	our	Node.js	process	or	our
machine—we	won’t	receive	errors	in	Sentry.	In	many	cases	we	won’t	need	to	worry	about	this:	for	instance,	a	Node.js
PaaS	will	automatically	monitor	and	restart	the	process,	and	for	a	FaaS,	it’s	irrelevant.	But	if	it	is	relevant	for	our
deployment	setup,	we	can	use	an	uptime	/	monitoring	service	that	pings	our	server	to	see	if	it’s	still	reachable	over	the
internet	and	responsive.	The	URL	we	can	use	for	that	(as	well	as	for	a	load	balancer,	if	we’re	using	one)	is		/.well-
known/apollo/server-health	,	which	should	return	status	200	and	this	JSON:

More	data	sources
SQL

SQL	setup
SQL	data	source
SQL	testing
SQL	performance

REST

Chapter	11:	Server	Dev

342

https://www.apollographql.com/docs/apollo-server/integrations/plugins/
https://www.apollographql.com/docs/apollo-server/integrations/plugins/#didencountererrors
https://docs.sentry.io/enriching-error-data/scopes/?platform=node#local-scopes

GraphQL
Custom	data	source
Prisma

There	are	lots	of	other	sources	of	data	out	there	we	might	want	to	use	in	our	GraphQL	servers,	and	when	we	want	to
query	one,	we	use	a	data	source.	When	we	use	the	term	“data	source”	in	this	chapter,	we’re	usually	talking	about	a
JavaScript	class	that	has	Apollo’s		DataSource		class	as	an	ancestor,	like	the		MongoDataSource		we	used	earlier.	There
are	data	sources	on	npm	that	others	have	written,	and	we	can	write	our	own.	There	are	also	alternatives,	one	of	which
we’ll	cover	at	the	end	called	Prisma.

SQL
Background:	SQL

Contents:

SQL	setup
SQL	data	source
SQL	testing
SQL	performance

In	this	section	we	replace	our	use	of	MongoDB	with	SQL.	In	the	first	part	we’ll	get	our	SQL	database	and	table
schemas	set	up.	Then	we’ll	replace	our	use	of		MongoDataSource		with		SQLDataSource	.	Then	in	SQL	testing,	we	update
our	tests,	and,	finally	in	SQL	performance,	we	improve	our	server’s	database	querying.

SQL	setup

If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...sql)

A	SQL	database	takes	more	setup	than	the	MongoDB	database	we’ve	been	using:	We	need	to	write	migrations—
code	that	creates	or	alters	tables	and	their	schemas.	The	most	popular	Node	library	for	SQL	is	Knex,	and	it	includes
the	ability	to	write	and	run	migrations.	To	start	using	it,	we	run		knex	init	.	Since	we	already	have	it	in	our
	node_modules/	,	we	can	run		npx	knex	init		in	a	new	directory	within	our	repository:

$	mkdir	sql

$	cd	sql/

$	npx	knex	init

This	creates	a	config	file:

	sql/knexfile.js	

//	Update	with	your	config	settings.

module.exports	=	{

		development:	{

				client:	'sqlite3',

				connection:	{

						filename:	'./dev.sqlite3'

				}

		},

		staging:	{

				client:	'postgresql',

				connection:	{

						database:	'my_db',

						user:	'username',

						password:	'password'

				},

				pool:	{

Chapter	11:	Server	Dev

343

https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...sql_0.1.0
https://knexjs.org/
https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/knexfile.js

						min:	2,

						max:	10

				},

				migrations:	{

						tableName:	'knex_migrations'

				}

		},

		production:	{

				client:	'postgresql',

				...

		}

}

By	default,	it	uses	SQLite	and	PostgreSQL	(two	types	of	SQL	databases)	for	development	and	deployment,
respectively.

One	aspect	of	database	setup	that’s	easier	with	SQL	than	MongoDB	is	running	the	database	in	development—SQLite
doesn’t	need	to	be	installed	with	Homebrew	and	run	as	a	service.	Instead,	it	can	be	installed	with	a	Node	library	and
run	off	of	a	single	file.	So	unless	we’re	using	a	special	feature	that	PostgreSQL	supports	but	SQLite	doesn’t,	we	can
use	SQLite	in	development.

We	also	won’t	be	deploying,	so	all	we	need	is:

	sql/knexfile.js	

module.exports	=	{

		development:	{

				client:	'sqlite3',

				connection:	{

						filename:	'./dev.sqlite3'

				},

				useNullAsDefault:	true

		}

}

(We	added		useNullAsDefault:	true		to	avoid	a	warning	message.)

Now	we	can	use	Knex	to	create	a	migration	that	will	set	up	our	users	and	reviews	tables:

$	npx	knex	migrate:make	users_and_reviews

This	generates	a	file	in	the	following	format:

	sql/migrations/[timestamp]_users_and_reviews.js	

exports.up	=	function(knex)	{

}

exports.down	=	function(knex)	{

}

Inside	the		up		function,	we	create	the	two	tables,	and	inside	the		down		function,	we	drop	(delete)	them.	To	do	all	that,
we	use	Knex’s	schema-building	API:

	sql/migrations/20191228233250_users_and_reviews.js	

exports.up	=	async	knex	=>	{

		await	knex.schema.createTable('users',	table	=>	{

				table.increments('id')

				table.string('first_name').notNullable()

				table.string('last_name').notNullable()

Chapter	11:	Server	Dev

344

https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/knexfile.js
https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/migrations
https://knexjs.org/#Schema
https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/migrations

				table.string('username').notNullable()

				table.string('email')

				table

						.string('auth_id')

						.notNullable()

						.unique()

				table.datetime('suspended_at')

				table.datetime('deleted_at')

				table.integer('duration_in_days')

				table.timestamps()

		})

}

	knex.schema.createTable('users'		creates	a	table	named		users	.
	table.increments('id')		creates	a	primary	index	column	named		id	.	It’s	auto-incrementing,	which	means	the
first	record	that’s	inserted	is	given	an		id		of	1,	and	the	second	record	gets	an		id		of	2,	etc.
	table.string('first_name').notNullable()		creates	a		first_name		column	that	can	hold	a	string	and	can’t	be	null.
	table.string('auth_id').notNullable().unique()		creates	an		auth_id		non-nullable	string	column	that	has	to	be
unique	among	all	records	in	the	table.
	table.datetime('suspended_at')		creates	a		suspended_at		column	that	can	hold	a	datetime.
	table.timestamps()		creates		created_at		and		updated_at		datetime	columns.

Similarly,	we	can	create	the		reviews		table:

exports.up	=	async	knex	=>	{

		await	knex.schema.createTable('users',	table	=>	{	...	})

		await	knex.schema.createTable('reviews',	table	=>	{

				table.increments('id')

				table

						.integer('author_id')

						.unsigned()

						.notNullable()

						.references('id')

						.inTable('users')

				table.string('text').notNullable()

				table.integer('stars').unsigned()

				table.timestamps()

		})

}

The	below	part	sets	up	a	foreign	key	constraint	on		author_id	,	so	the	only	values	that	can	be	stored	in	this	column
match	an		id		field	in	the		users		table:

				table

						.integer('author_id')

						.unsigned()

						.notNullable()

						.references('id')

						.inTable('users')

Finally,	we	call		dropTable()		in	the		down		function:

	sql/migrations/20191228233250_users_and_reviews.js	

exports.up	=	async	knex	=>	{

		await	knex.schema.createTable('users',	table	=>	{	...	})

		await	knex.schema.createTable('reviews',	table	=>	{	...	})

}

exports.down	=	async	knex	=>	{

		await	knex.schema.dropTable('users')

		await	knex.schema.dropTable('reviews')

}

Chapter	11:	Server	Dev

345

https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/migrations

To	run	our	migration		up		function,	we	use:

$	npx	knex	migrate:latest

And	to	undo,	we	would	do		npx	knex	migrate:rollback	--all	.	If	in	the	future	we	want	to	make	a	change	to	the
schema,	we	would	create	another	migration	with	a	more	recent	timestamp—e.g.,
	[timestamp]_add_deleted_column_to_reviews.js	—that	adds	a		deleted		column	to	the		reviews		table,	and	commits	it	to
git.	Then,	whenever	a	dev	was	on	the	version	of	the	code	that	used	the		reviews.deleted		column,	they	could	migrate
to	the	latest	version	of	the	database,	and	code	that	modifies	a	review’s		deleted		field	would	work.

With	MongoDB,	we	didn’t	have	migrations,	and	we	added	or	changed	documents	manually.	With	SQL,	we	could	run
migrations	that	drop	our	tables	and	everything	in	them,	so	re-inserting	records	manually	would	get	tedious.	So	Knex
supports	seed	files	that	we	can	run	to	automatically	insert	records.	We	start	with		seed:make	,	which	creates	an
example	seed	file:

$	npx	knex	seed:make	users

	sql/seeds/users.js	

exports.seed	=	function(knex)	{

		//	Deletes	ALL	existing	entries

		return	knex('table_name').del()

				.then(function	()	{

						//	Inserts	seed	entries

						return	knex('table_name').insert([

								{id:	1,	colName:	'rowValue1'},

								{id:	2,	colName:	'rowValue2'},

								{id:	3,	colName:	'rowValue3'}

]);

				});

};

Now	we	modify	the	example	file	to	use	async/await	and	match	our		users		table	schema:

exports.seed	=	async	knex	=>	{

		await	knex('users').del()

		await	knex('users').insert([

				{

						id:	1,

						firstName:	'John',

						lastName:	'Resig',

						username:	'jeresig',

						email:	'john@graphql.guide',

						authId:	'github|1615',

						created_at:	new	Date(),

						updated_at:	new	Date()

				}

])

}

And	then	copy	the	file	for	inserting	reviews:

	sql/seeds/reviews.js	

exports.seed	=	async	knex	=>	{

		await	knex('reviews').del()

		await	knex('reviews').insert([

				{

						id:	1,

						author_id:	1,

						text:	`Now	that's	a	downtown	job!`,

						stars:	5,

						created_at:	new	Date(),

Chapter	11:	Server	Dev

346

https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/seeds/users.js
https://github.com/GraphQLGuide/guide-api/blob/sql_0.2.0/sql/seeds/reviews.js

						updated_at:	new	Date()

				},

				{

						id:	2,

						author_id:	1,

						text:	'Passable',

						stars:	3,

						created_at:	new	Date(),

						updated_at:	new	Date()

				}

])

}

We	run	the	seed	files	with:

$	npx	knex	seed:run

We	can	view	if	it	worked	with	either	the	command-line	SQLite	client	or	a	GUI.	The	command-line	client,		sqlite3	,	is
included	by	default	on	Macs.	We	give	it	the	database	file		sql/dev.sqlite3		as	an	argument,	and	then	we	can	run	SQL
statements	like		SELECT	*	FROM	reviews;	.

$	sqlite3	sql/dev.sqlite3	

SQLite	version	3.30.1	2019-10-10	20:19:45

Enter	".help"	for	usage	hints.

sqlite>	SELECT	*	FROM	reviews;

1|1|Now	that's	a	downtown	job!|5|1578122461308|1578122461308

2|1|Passable|3|1578122461308|1578122461308

There	are	many	SQL	GUIs.	Our	favorite	is	TablePlus,	which	works	with	not	only	different	types	of	SQL	databases,	but
other	databases	as	well,	including	Redis	and	MongoDB.	When	creating	a	new	connection,	we	select	SQLite	and	then
the	file		sql/dev.sqlite3	,	and	hit	Connect.	Then	on	the	left,	we	see	the	list	of	tables	in	our	database,	and	if	we	double-
click		reviews	,	we	see	the	table’s	contents:

Lastly,	we	no	longer	need	to	connect	to	a	MongoDB	database,	so	we	can	remove	the	call	to		connectToDB()		in
	src/index.js	.

Before	we	commit	our	changes,	we	want	to	add	the	below	line	to		.gitignore	:

sql/dev.sqlite3

We	don’t	want	our	database	in	our	code	repository—it’s	meant	to	be	generated	and	modified	by	each	individual
developer	using	our	migration	and	seed	scripts.

SQL	data	source

If	you’re	jumping	in	here,		git	checkout	sql_0.1.0		(tag	sql_0.1.0,	or	compare	sql...sql2)

Chapter	11:	Server	Dev

347

https://tableplus.com/
https://github.com/GraphQLGuide/guide-api/tree/sql_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/sql_0.1.0...sql2_0.1.0

Now	that	we’ve	set	up	our	SQL	database	and	inserted	records,	we	need	to	query	them.	So	we	look	for	a	SQL	data
source	class	to	use,	either	on	the	community	data	sources	list	in	the	Apollo	docs	or	by	searching	“apollo	data	source
sql”	on	Google	or	npm.	We	find		datasource-sql	,	which	provides	the	class		SQLDataSource	.

	SQLDataSource		is	unusual	among	data	sources	in	that:

A	single	instance	is	created	(versus	a	new	instance	for	each	request).
It	does	caching	only,	not	batching.

It	also:

recommends	using	a	single	class	for	the	whole	database,	instead	of	a	class	per	table	as	we	did	with
	MongoDataSource	

uses	a	specific	library—Knex!

Let’s	start	by	creating	our	data	source	class:

	src/data-sources/SQL.js	

import	{	SQLDataSource	}	from	'datasource-sql'

class	SQL	extends	SQLDataSource	{

		//	TODO

}

export	default	SQL

Our	job	will	be	to	fill	in	the	class	with	methods	our	resolvers	need.	To	know	what	those	methods	are,	let’s	go	at	it	from
the	other	direction:	creating	and	using	the	data	source	as	if	it	were	complete.

First	let’s	create	it.	Instead	of	our	current	data	sources	file:

	src/data-sources/index.js	

import	Reviews	from	'./Reviews'

import	Users	from	'./Users'

import	Github	from	'./Github'

import	{	db	}	from	'../db'

export	default	()	=>	({

		reviews:	new	Reviews(db.collection('reviews')),

		users:	new	Users(db.collection('users'))

})

export	{	Reviews,	Users,	Github	}

we	do:

import	Github	from	'./Github'

import	SQL	from	'./SQL'

export	const	knexConfig	=	{

		client:	'sqlite3',

		connection:	{

				filename:	'./sql/dev.sqlite3'

		},

		useNullAsDefault:	true

}

export	const	db	=	new	SQL(knexConfig)

export	default	()	=>	({	db	})

export	{	Github	}

Chapter	11:	Server	Dev

348

https://www.apollographql.com/docs/apollo-server/data/data-sources/#community-data-sources
https://github.com/cvburgess/SQLDataSource/
https://github.com/GraphQLGuide/guide-api/blob/sql2_0.2.0/src/data-sources/SQL.js
https://github.com/GraphQLGuide/guide-api/compare/sql_0.2.0...sql2_0.2.0

The		SQLDataSource		constructor	takes	the	same	config	we	have	in	our		sql/knexfile.js	.	Since	we	only	want	a	single
instance,	we	move	the	creation	(new	SQL(knexConfig))	outside	of	the	exported	function.	Instead	of	the	data	source
instances	being	named		reviews		and		users	,	it’s	named		db		(because	it	is	the	way	to	access	the	whole	SQL
database).

Now	in	resolvers,	we	can	use	functions	like		context.dataSources.db.getReviews()		instead	of
	context.dataSources.reviews.all()	.	And	we	also	need	to	replace		camelCase		fields	with		snake_case	,	like		deletedAt	-
>	deleted_at	.

	src/resolvers/User.js	

export	default	{

		Query:	{

				me:	...,

				user:	(_,	{	id	},	{	dataSources:	{	db	}	})	=>	db.getUser({	id	}),

				searchUsers:	(_,	{	term	},	{	dataSources:	{	db	}	})	=>	db.searchUsers(term)

		},

		UserResult:	{

				__resolveType:	result	=>	{

						if	(result.deleted_at)	{

								return	'DeletedUser'

						}	else	if	(result.suspended_at)	{

								return	'SuspendedUser'

						}	else	{

								return	'User'

						}

				}

		},

		SuspendedUser:	{

				daysLeft:	user	=>	{

						const	end	=	addDays(user.suspended_at,	user.duration_in_days)

						return	differenceInDays(end,	new	Date())

				}

		},

		User:	{

				firstName:	user	=>	user.first_name,

				lastName:	user	=>	user.last_name,

				email:	...,

				photo(user)	{

						//	user.auth_id:	'github|1615'

						const	githubId	=	user.auth_id.split('|')[1]

						return	`https://avatars.githubusercontent.com/u/${githubId}`

				},

				createdAt:	user	=>	user.created_at,

				updatedAt:	user	=>	user.updated_at

		},

		Mutation:	{

				createUser(_,	{	user,	secretKey	},	{	dataSources:	{	db	}	})	{

						if	(secretKey	!==	process.env.SECRET_KEY)	{

								throw	new	AuthenticationError('wrong	secretKey')

						}

						return	db.createUser(user)

				}

		}

}

So	the		db.*		methods	we	needed	and	named	are:

db.getUser()

db.searchUsers()

db.createUser()

Note	that	we	needed	to	add	resolvers	for		firstName	,		lastName	,	and		updatedAt	,	because	we	no	longer	have
database	fields	with	those	exact	names	(instead	we	have		first_name	,		last_name	,	and		updated_at).

Next	let’s	update	our	Review	resolvers:

Chapter	11:	Server	Dev

349

https://github.com/GraphQLGuide/guide-api/compare/sql_0.2.0...sql2_0.2.0

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	(_,	__,	{	dataSources:	{	db	}	})	=>	db.getReviews()

		},

		Review:	{

				author:	(review,	_,	{	dataSources:	{	db	}	})	=>

						db.getUser({	id:	review.author_id	}),

				fullReview:	async	(review,	_,	{	dataSources:	{	db	}	})	=>	{

						const	author	=	await	db.getUser({	id:	review.author_id	})

						return	`${author.first_name}	${author.last_name}	gave	${review.stars}	stars,	saying:	"${review.text}"`

				},

				createdAt:	review	=>	review.created_at,

				updatedAt:	review	=>	review.updated_at

		},

		Mutation:	{

				createReview:	(_,	{	review	},	{	dataSources:	{	db	},	user	})	=>	{

						...

						const	newReview	=	db.createReview(review)

						pubsub.publish('reviewCreated',	{

								reviewCreated:	newReview

						})

						return	newReview

				}

		},

		Subscription:	{

				reviewCreated:	...

		}

}

We	reused	the		db.getUser()		function	and	used	two	new	ones:

db.getReviews()

db.createReview()

The	Users	and	Reviews	resolvers	were	the	only	place	we	used		context.dataSources	,	but	we	can	do	a	workspace	text
search	for		db.collection		to	find	any	other	uses	of	our	MongoDB	database.	The	only	match	is	from	our	context
function	in		src/context.js	:

		const	user	=	await	db.collection('users').findOne({	authId	})

To	update	this,	we	need	access	to	our	SQL	data	source.	In		src/data-sources/index.js	,	we	have	this	line:

export	const	db	=	new	SQL(knexConfig)

So	we	can	import	our	new		db		from	there.

	src/context.js	

import	{	db	}	from	'./data-sources/'

export	default	async	({	req	})	=>	{

		...

				const	user	=	await	db.getUser({	auth_id:	authId	})

		...

		return	context

}

Chapter	11:	Server	Dev

350

https://github.com/GraphQLGuide/guide-api/compare/sql_0.2.0...sql2_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/sql_0.2.0...sql2_0.2.0

Now	we	can	implement	all	the	data	source	methods	we’re	using:

db.getReviews()

db.createReview()

db.createUser()

db.getUser()

db.searchUsers()

Inside	methods	we	have	access	to		this.context	,	which	has	the	current	user,	and		this.knex	,	our	Knex	instance,
which	we	use	to	construct	SQL	statements.	For	example,	here’s		SELECT	*	FROM	reviews;	:

	src/data-sources/SQL.js	

import	{	SQLDataSource	}	from	'datasource-sql'

const	REVIEW_TTL	=	60	//	minute

class	SQL	extends	SQLDataSource	{

		getReviews()	{

				return	this.knex

						.select('*')

						.from('reviews')

						.cache(REVIEW_TTL)

		}

		async	createReview(review)	{	...	}

		async	createUser(user)	{	...	}

		async	getUser(where)	{	...	}

		searchUsers(term)	{	...	}

}

export	default	SQL

The	added		.cache()		tells		SQLDataSource		to	cache	the	response	for	the	provided	number	of	seconds.

Next	up	is		createReview()	,	where	we	get	a	review	from	the	client	and	need	to	add	the	current	user’s	ID	as	well	as
timestamps:

class	SQL	extends	SQLDataSource	{

		getReviews()	{	...	}

		async	createReview(review)	{

				review.author_id	=	this.context.user.id

				review.created_at	=	Date.now()

				review.updated_at	=	Date.now()

				const	[id]	=	await	this.knex

						.returning('id')

						.insert(review)

						.into('reviews')

				review.id	=	id

				return	review

		}

		async	createUser(user)	{	...	}

		async	getUser(where)	{	...	}

		searchUsers(term)	{	...	}

}

We	tell	Knex	to	return	the	inserted	ID	(.returning('id'))	so	that	we	can	add	it	to	the	review	object	and	return	it.	We
didn’t	do	this	before	because	MongoDB’s		collection.insertOne(review)		automatically	added	an		_id		to		review	.	We
do	the	same	for		createUser()	:

class	SQL	extends	SQLDataSource	{

		getReviews()	{	...	}

		async	createReview()	{	...	}

Chapter	11:	Server	Dev

351

http://knexjs.org/#Builder
https://github.com/GraphQLGuide/guide-api/blob/sql2_0.2.0/src/data-sources/SQL.js

		async	createUser(user)	{

				const	newUser	=	{

						first_name:	user.firstName,

						last_name:	user.lastName,

						username:	user.username,

						email:	user.email,

						auth_id:	user.authId,

						created_at:	Date.now(),

						updated_at:	Date.now()

				}

				const	[id]	=	await	this.knex

						.returning('id')

						.insert(newUser)

						.into('users')

				newUser.id	=	id

				return	newUser

		}

		async	getUser(where)	{	...	}

		searchUsers(term)	{	...	}

}

Here	we	just	take	the	fields	out	of	the	user	argument	(which	matches	the	GraphQL	schema)	and	put	them	into	a
	newUser		object	that	matches	the	SQL		users		table	schema.

Lastly,	we	have		getUser()		and		searchUser()	.	The		getUser()		function	receives	an	object	like		{id:	1}		or
	{auth_id:	'github|1615'}	,	which	can	be	passed	directly	to	Knex’s		.where()	:

const	REVIEW_TTL	=	60	//	minute

const	USER_TTL	=	60	*	60	//	hour

class	SQL	extends	SQLDataSource	{

		getReviews()	{	...	}

		async	createReview(review)	{	...	}

		async	createUser(user)	{	...	}

		async	getUser(where)	{

				const	[user]	=	await	this.knex

						.select('*')

						.from('users')

						.where(where)

						.cache(USER_TTL)

				return	user

		}

		searchUsers(term)	{

				return	this.knex

						.select('*')

						.from('users')

						.where('first_name',	'like',	`%${term}%`)

						.orWhere('last_name',	'like',	`%${term}%`)

						.orWhere('username',	'like',	`%${term}%`)

						.cache(USER_TTL)

		}

}

We	use	a	longer	TTL	for	users	with	the	idea	they’ll	change	less	often	than	reviews	will.	We	could	also	have	different
TTLs	for	different	types	of	queries.	For	instance,	we	could	use	60	seconds	for	selecting	a	single	review	but	only	5
seconds	for	selecting	all	reviews.	Then	we	wouldn’t	have	to	wait	more	than	5	seconds	to	see	a	new	review	appear	on
the	reviews	page.

SQL’s		like		syntax	is	followed	by	a	search	pattern	that	can	include	the		%		wildcard,	which	takes	the	place	of	zero	or
more	characters.

Now	let’s	see	if	it	works	by	running		npm	run	dev		and	making	queries	in	Playground:

Chapter	11:	Server	Dev

352

	Looks	like	it’s	working!	...but	not	if	we	select	a	Date	field:

	The	stacktrace	points	to	this	part	of		src/resolvers/Date.js	:

		serialize(date)	{

				if	(!(date	instanceof	Date))	{

						throw	new	Error(

								'Resolvers	for	Date	scalars	must	return	JavaScript	Date	objects'

)

				}

				if	(!isValid(date))	{

						throw	new	Error('Invalid	Date	scalar')

				}

				return	date.getTime()

		}

Chapter	11:	Server	Dev

353

Remember	when	we	wrote	that?	A	custom	scalar’s		serialize()		function	is	called	when	a	value	is	returned	from	a
resolver,	and	it	formats	the	value	for	being	sent	to	the	client.	When	we	were	querying	MongoDB,	our	results—for
instance		review.createdAt	—were	JavaScript	Date	objects,	and	we	formatted	them	as	integers.	But	when	we	query
SQL	datetime	fields,	we	get	them	as	integers,	so	we	don’t	need	to	format	them	differently	for	sending	to	the	client.
Similarly,	when	we	receive	values	from	the	client,	we	don’t	need	to	convert	them	to	Date	objects	in		parseValue()		and
	parseLiteral()	.	However,	we	can	still	check	to	make	sure	they’re	valid	date	integers:

	src/resolvers.Date.js	

import	{	GraphQLScalarType	}	from	'graphql'

import	{	Kind	}	from	'graphql/language'

const	isValid	=	date	=>	!isNaN(date.getTime())

export	default	{

		Date:	new	GraphQLScalarType({

				name:	'Date',

				description:

						'The	`Date`	scalar	type	represents	a	single	moment	in	time.	It	is	serialized	as	an	integer,	equal	to	the	

number	of	milliseconds	since	the	Unix	epoch.',

				parseValue(value)	{

						if	(!Number.isInteger(value))	{

								throw	new	Error('Date	values	must	be	integers')

						}

						const	date	=	new	Date(value)

						if	(!isValid(date))	{

								throw	new	Error('Invalid	Date	value')

						}

						return	value

				},

				parseLiteral(ast)	{

						if	(ast.kind	!==	Kind.INT)	{

								throw	new	Error('Date	literals	must	be	integers')

						}

						const	dateInt	=	parseInt(ast.value)

						const	date	=	new	Date(dateInt)

						if	(!isValid(date))	{

								throw	new	Error('Invalid	Date	literal')

						}

						return	dateInt

				},

				serialize(date)	{

						if	(!Number.isInteger(date))	{

								throw	new	Error('Resolvers	for	Date	scalars	must	return	integers')

						}

						if	(!isValid(new	Date(date)))	{

								throw	new	Error('Invalid	Date	scalar')

						}

						return	date

				}

		})

}

For		parseValue()	,	the	value	is	already	an	integer.	For		parseLiteral()	,	we	get	a	string,	so	we	use		parseInt()	.

The	last	thing	we	need	to	update	is	our	root	query	field		isoString(date:	Date)	:

				isoString:	(_,	{	date	})	=>	date.toISOString()

Chapter	11:	Server	Dev

354

https://github.com/GraphQLGuide/guide-api/compare/sql_0.2.0...sql2_0.2.0

	date		used	to	be	a	Date	instance,	but	now	it’s	an	integer,	so	we	can’t	call		toISOString()		until	we	create	a	Date
object.	But	strangely	enough,	we	can’t	create	a	Date	object	because	the		Date		identifier	is	being	used	later	in	the	file:

import	Date	from	'./Date'

So	we	also	need	to	change	what	we	call	the	Date	resolvers	we’re	importing:

`src/resolvers/index.js

const	resolvers	=	{

		Query:	{

				hello:	()	=>	'ɍ ɏ Ɏ ',

				isoString:	(_,	{	date	})	=>	new	Date(date).toISOString()

		}

}

import	Review	from	'./Review'

import	User	from	'./User'

import	DateResolvers	from	'./Date'

import	Github	from	'./Github'

export	default	[resolvers,	Review,	User,	DateResolvers,	Github]

Now	all	our	dates	are	working:

SQL	testing

If	you’re	jumping	in	here,		git	checkout	sql2_0.1.0		(tag	sql2_0.1.0,	or	compare	sql2...sql3)

In	the	last	section	we	implemented	and	used	(okay,	more	like	used	then	implemented)	our	SQL	data	source.	We
also	made	a	couple	of	queries	to	see	if	it	worked,	and	the	queries	did	work	(eventually),	but	it	wasn’t	a	comprehensive
test.	Let’s	update	our	automated	tests	(which	are	currently	broken)	so	we	can	have	a	higher	level	of	confidence	in	our
code’s	correctness.

The	place	to	start	updating	is	in	the	code	at	the	base	of	all	our	tests,		test/guide-test-utils.js	.	We	need	to:

Update	mocked	data	field	names	(_id	->	id		and		firstName	->	first_name)	and	values.
Mock	our	new	SQL	data	source.
Remove	our	old	data	sources	and	database	connection	code.

	test/guide-test-utils.js	

import	{	ApolloServer	}	from	'apollo-server'

import	{	promisify	}	from	'util'

Chapter	11:	Server	Dev

355

https://github.com/GraphQLGuide/guide-api/compare/sql_0.2.0...sql2_0.2.0
https://github.com/GraphQLGuide/guide-api/tree/sql2_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/sql2_0.1.0...sql3_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/sql2_0.2.0...sql3_0.2.0

import	{	HttpLink	}	from	'apollo-link-http'

import	fetch	from	'node-fetch'

import	{	execute,	toPromise	}	from	'apollo-link'

import	{

		server,

		typeDefs,

		resolvers,

		context	as	defaultContext,

		formatError

}	from	'../src/'

const	created_at	=	new	Date('2020-01-01').getTime()

const	updated_at	=	created_at

export	const	mockUser	=	{

		id:	1,

		first_name:	'First',

		last_name:	'Last',

		username:	'mockA',

		auth_id:	'mockA|1',

		email:	'mockA@gmail.com',

		created_at,

		updated_at

}

const	mockUsers	=	[mockUser]

const	reviewA	=	{

		id:	1,

		text:	'A+',

		stars:	5,

		created_at,

		updated_at,

		author_id:	mockUser.id

}

const	reviewB	=	{

		id:	2,

		text:	'Passable',

		stars:	3,

		created_at,

		updated_at,

		author_id:	mockUser._id

}

const	mockReviews	=	[reviewA,	reviewB]

class	SQL	{

		getReviews()	{

				return	mockReviews

		}

		createReview()	{

				return	reviewA

		}

		createUser()	{

				return	mockUser

		}

		getUser()	{

				return	mockUser

		}

		searchUsers()	{

				return	mockUsers

		}

}

export	const	db	=	new	SQL()

export	const	createTestServer	=	({	context	=	defaultContext	}	=	{})	=>	{

		const	server	=	new	ApolloServer({

				typeDefs,

				resolvers,

				dataSources:	()	=>	({	db	}),

				context,

Chapter	11:	Server	Dev

356

				formatError,

				engine:	false

		})

		return	{	server,	dataSources:	{	db	}	}

}

export	const	startE2EServer	=	async	()	=>	{

		const	e2eServer	=	await	server.listen({	port:	0	})

		const	stopServer	=	promisify(e2eServer.server.close.bind(e2eServer.server))

		const	link	=	new	HttpLink({

				uri:	e2eServer.url,

				fetch

		})

		return	{

				stop:	stopServer,

				request:	operation	=>	toPromise(execute(link,	operation))

		}

}

export	{	createTestClient	}	from	'apollo-server-testing'

export	{	default	as	gql	}	from	'graphql-tag'

In	our	User	resolver	tests,	we	also	need	to	update	field	names:

	src/resolvers/User.test.js	

import	{

		createTestServer,

		createTestClient,

		gql,

		mockUser

}	from	'guide-test-utils'

const	ME	=	gql`

		query	{

				me	{

						id

				}

		}

`

test('me',	async	()	=>	{

		const	{	server	}	=	createTestServer({

				context:	()	=>	({	user:	{	id:	'itme'	}	})

		})

		const	{	query	}	=	createTestClient(server)

		const	result	=	await	query({	query:	ME	})

		expect(result.data.me.id).toEqual('itme')

})

const	USER	=	gql`

		query	User($id:	ID!)	{

				user(id:	$id)	{

						id

				}

		}

`

test('user',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	query	}	=	createTestClient(server)

		const	id	=	mockUser.id

		const	result	=	await	query({

				query:	USER,

				variables:	{	id	}

		})

		expect(result.data.user.id).toEqual(id.toString())

Chapter	11:	Server	Dev

357

https://github.com/GraphQLGuide/guide-api/compare/sql2_0.2.0...sql3_0.2.0

})

const	CREATE_USER	=	gql`

		mutation	CreateUser($user:	CreateUserInput!,	$secretKey:	String!)	{

				createUser(user:	$user,	secretKey:	$secretKey)	{

						id

				}

		}

`

test('createUser',	async	()	=>	{

		const	{	server	}	=	createTestServer()

		const	{	mutate	}	=	createTestClient(server)

		const	user	=	{

				firstName:	mockUser.first_name,

				lastName:	mockUser.last_name,

				username:	mockUser.username,

				email:	mockUser.email,

				authId:	mockUser.auth_id

		}

		const	result	=	await	mutate({

				mutation:	CREATE_USER,

				variables:	{

						user,

						secretKey:	process.env.SECRET_KEY

				}

		})

		expect(result).toMatchSnapshot()

})

Now	if	we	run		npm	test	,	we	see	tests	fail	due	to	mismatching	snapshots,	which	we	can	update	with		npx	jest	-u	.

One	thing	we	updated	in	the	last	section	that	we	don’t	have	a	test	for	is	the	context	function:

	src/context.js	

import	{	AuthenticationError	}	from	'apollo-server'

import	{	getAuthIdFromJWT	}	from	'./util/auth'

import	{	db	}	from	'./data-sources/'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req	&&	req.headers.authorization

		let	authId

		if	(jwt)	{

				try	{

						authId	=	await	getAuthIdFromJWT(jwt)

				}	catch	(e)	{

						let	message

						if	(e.message.includes('jwt	expired'))	{

								message	=	'jwt	expired'

						}	else	{

								message	=	'malformed	jwt	in	authorization	header'

						}

						throw	new	AuthenticationError(message)

				}

				const	user	=	await	db.getUser({	auth_id:	authId	})

				if	(user)	{

						context.user	=	user

				}	else	{

						throw	new	AuthenticationError('no	such	user')

				}

		}

		return	context

Chapter	11:	Server	Dev

358

https://github.com/GraphQLGuide/guide-api/blob/sql2_0.2.0/src/context.js

}

Let’s	write	a	test	for	it!	In	order	to	test	it,	we	have	two	options:

Using	an	authorization	header	that	successfully	decodes	to	our	mock		auth_id	:		mockA|1	.	We	can’t	create	such	a
JWT,	and,	even	if	we	could,	it	would	expire.	And	then	our	test	would	fail.
Make	it	a	unit	test	and	mock	all	the	functions	it	calls—in	this	case		getAuthIdFromJWT()		and		db.getUser()	.

Let’s	do	the	second.	To	mock	an	import,	we	need	to	call		jest.mock(file)	:

	src/context.test.js	

import	{	mockUser	}	from	'guide-test-utils'

jest.mock('./util/auth',	()	=>	({

		getAuthIdFromJWT:	jest.fn(jwt	=>	(jwt	===	'valid'	?	mockUser.auth_id	:	null))

}))

jest.mock('./data-sources/',	()	=>	({

		db:	{

				getUser:	({	auth_id	})	=>	(auth_id	===	mockUser.auth_id	?	mockUser	:	null)

		}

}))

Now	when	any	code	we’re	testing	does	the	below	imports,	it	will	get	our	mock	implementations.

import	{	getAuthIdFromJWT	}	from	'./util/auth'

import	{	db	}	from	'./data-sources/'

Let’s	test	the	success	case	first:

import	getContext	from	'./context'

import	{	getAuthIdFromJWT	}	from	'./util/auth'

describe('context',	()	=>	{

		it('finds	a	user	given	a	valid	jwt',	async	()	=>	{

				const	context	=	await	getContext({

						req:	{	headers:	{	authorization:	'valid'	}	}

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(1)

				expect(context.user).toMatchSnapshot()

		})

})

We	can	check	our	snapshot:

	src/__snapshots__/context.test.js.snap	

//	Jest	Snapshot	v1,	https://goo.gl/fbAQLP

exports[`context	finds	a	user	given	a	valid	jwt	1`]	=	`

Object	{

		"auth_id":	"mockA|1",

		"created_at":	1577836800000,

		"email":	"mockA@gmail.com",

		"first_name":	"First",

		"id":	1,

		"last_name":	"Last",

		"updated_at":	1577836800000,

		"username":	"mockA",

}

`;

Chapter	11:	Server	Dev

359

https://github.com/GraphQLGuide/guide-api/blob/sql3_0.2.0/src/context.test.js

	Looks	good!	Next	let’s	make	sure	that	giving	an	invalid	JWT	throws	an	error:

	src/context.test.js	

import	{	AuthenticationError	}	from	'apollo-server’

describe('context',	()	=>	{

		it('finds	a	user	given	a	valid	jwt',	async	()	=>	{	...	}

		it('throws	error	on	invalid	jwt',	async	()	=>	{

				const	promise	=	getContext({

						req:	{	headers:	{	authorization:	'invalid'	}	}

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(1)

				expect(promise).rejects.toThrow(AuthenticationError)

		})

})

We	see	with		npx	jest	context		that	the	test	fails,	saying	that	the		getAuthIdFromJWT		mock	was	called	twice.

Adding		context		after		npx	jest		limits	testing	to	files	with	“context”	in	their	names.

The	mock	calls	are	cumulative	until	we	clear	the	mock.	Let’s	do	that	after	each	test:

describe('context',	()	=>	{

		afterEach(()	=>	{

				getAuthIdFromJWT.mockClear()

		})

		it('finds	a	user	given	a	valid	jwt',	async	()	=>	{	...	}

		it('throws	error	on	invalid	jwt',	async	()	=>	{

				const	promise	=	getContext({

						req:	{	headers:	{	authorization:	'invalid'	}	}

Chapter	11:	Server	Dev

360

https://github.com/GraphQLGuide/guide-api/blob/sql3_0.2.0/src/context.test.js

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(1)

				expect(promise).rejects.toThrow(AuthenticationError)

		})

})

	And	we’re	back	to	green.	Lastly,	let’s	test	a	blank	auth	header:

describe('context',	()	=>	{

		afterEach(()	=>	{

				getAuthIdFromJWT.mockClear()

		})

		it('finds	a	user	given	a	valid	jwt',	async	()	=>	{	...	}

		it('throws	error	on	invalid	jwt',	async	()	=>	{	...	}

		it('is	empty	without	jwt',	async	()	=>	{

				const	context	=	await	getContext({

						req:	{	headers:	{}	}

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(0)

				expect(context).toEqual({})

		})

})

	And	still	green!	 	All	together,	that’s:

	src/context.test.js	

import	{	AuthenticationError	}	from	'apollo-server'

import	{	mockUser	}	from	'guide-test-utils'

import	getContext	from	'./context'

import	{	getAuthIdFromJWT	}	from	'./util/auth'

jest.mock('./util/auth',	()	=>	({

		getAuthIdFromJWT:	jest.fn(jwt	=>	(jwt	===	'valid'	?	mockUser.auth_id	:	null))

}))

jest.mock('./data-sources/',	()	=>	({

		db:	{

				getUser:	({	auth_id	})	=>	(auth_id	===	mockUser.auth_id	?	mockUser	:	null)

		}

}))

describe('context',	()	=>	{

		afterEach(()	=>	{

				getAuthIdFromJWT.mockClear()

		})

		it('finds	a	user	given	a	valid	jwt',	async	()	=>	{

				const	context	=	await	getContext({

						req:	{	headers:	{	authorization:	'valid'	}	}

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(1)

				expect(context.user).toMatchSnapshot()

		})

		it('throws	error	on	invalid	jwt',	async	()	=>	{

				const	promise	=	getContext({

						req:	{	headers:	{	authorization:	'invalid'	}	}

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(1)

				expect(promise).rejects.toThrow(AuthenticationError)

		})

		it('is	empty	without	jwt',	async	()	=>	{

Chapter	11:	Server	Dev

361

https://github.com/GraphQLGuide/guide-api/blob/sql3_0.2.0/src/context.test.js

				const	context	=	await	getContext({

						req:	{	headers:	{}	}

				})

				expect(getAuthIdFromJWT.mock.calls.length).toBe(0)

				expect(context).toEqual({})

		})

})

Unfortunately	if	we	run		npm	test	,	we	see	our	coverage	is	down	to	40%.	And	if	we	look	at	the	coverage	report	(npm
run	open-coverage),	we	see	not	much	of	our	SQL	data	source	is	covered:

Our	old		Users.js		and		Reviews.js		files	were	100%	covered:

The	issue	is	that	before,	we	were	mocking	the		.find()		and		.insertOne()		methods	of	MongoDB	collections,	and
currently,	we’re	mocking	the	data	source	methods:

	test/guide-test-utils.js	

class	SQL	{

		getReviews()	{

				return	mockReviews

		}

		createReview()	{

				return	reviewA

		}

		createUser()	{

				return	mockUser

Chapter	11:	Server	Dev

362

https://github.com/GraphQLGuide/guide-api/compare/sql2_0.2.0...sql3_0.2.0

		}

		getUser()	{

				return	mockUser

		}

		searchUsers()	{

				return	mockUsers

		}

}

If	we	wanted	to	cover		SQL.js	,	we	would	need	to	run	the	actual	methods,	which	means	we	would	need	to	instead
mock	the		this.knex		used	by	the	methods.

SQL	performance

If	you’re	jumping	in	here,		git	checkout	sql3_0.1.0		(tag	sql3_0.1.0,	or	compare	sql3...sql4)

The	two	main	performance	factors	when	it	comes	to	database	querying	are	latency	and	load.	Latency	is	how	quickly
we	get	all	the	data	we	need,	and	load	is	how	much	work	the	database	is	doing.	Latency	usually	won’t	be	an	issue
unless	we	have	complex	queries	or	a	lot	of	data.	Load	won’t	be	an	issue	unless	we	have	a	lot	of	clients
simultaneously	using	our	API.

When	neither	latency	nor	load	is	an	issue	for	our	app,	we	don’t	need	to	concern	ourselves	with	performance,	and	our
current	implementation	is	fine.	If	either	becomes	an	issue	(or	if	we’re	certain	that	it	will	be	when	our	API	is	completed
and	released),	then	we	have	different	ways	we	can	improve	performance.	This	section	is	mainly	about	using	SQL
JOIN	statements,	which	we’re	currently	not	using.	We	discuss	more	performance	topics	in	the	Performance	section
later	in	the	chapter.

Let’s	consider	this	GraphQL	query:

{

		reviews	{

				id

				text

				author	{

						firstName

				}

		}

}

If	we	were	writing	an	efficient	SQL	statement	to	fetch	that	data,	we’d	write:

SELECT	reviews.id,	reviews.text,	users.first_name

FROM	reviews	

LEFT	JOIN	users	

ON	reviews.author_id	=	users.id

Let’s	compare	this	statement	to	what	happens	with	our	current	server.	We	can	have	Knex	print	out	statements	it
sends	by	adding	a		DEBUG=knex:query		env	var.	When	we	do	that	and	make	the	above	GraphQL	query,	we	see	these
three	SQL	statements:

$	DEBUG=knex:query	npm	run	dev

GraphQL	server	running	at	http://localhost:4000/

SQL	(1.437	ms)	select	*	from	`reviews`

SQL	(0.364	ms)	select	*	from	`users`	where	`id`	=	1

SQL	(0.377	ms)	select	*	from	`users`	where	`id`	=	1

There	are	a	few	issues	with	this:

There	are	3	queries	instead	of	1.	(And	more	generally,	there	are		N+1		queries,	where		N		is	the	number	of
reviews.)

Chapter	11:	Server	Dev

363

https://github.com/GraphQLGuide/guide-api/tree/sql3_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/sql3_0.1.0...sql4_0.1.0

They	all	select		*		instead	of	just	the	fields	needed.
The	second	two	are	redundant	(they	occur	because	SQLDataSource	doesn’t	do	batching).

This	probably	will	result	in	a	higher	load	on	the	SQL	server	than	the	single	efficient	statement	we	wrote.	It	also	has	a
higher	latency,	since	not	all	of	the	three	statements	are	sent	at	the	same	time—first	the	reviews	are	fetched,	then	the
	author_id	s	are	used	to	create	the	rest	of	the	statements.	That’s	two	round	trips	over	the	network	from	the	API	server
to	the	database	instead	of	the	one	trip	our	efficient	statement	took.

Let’s	change	our	code	to	use	a	JOIN	like	the	efficient	statement	did.	Currently,	the		reviews		root	Query	field	calls	the
	getReviews()		data	source	method:

	src/data-sources/SQL.js	

class	SQL	extends	SQLDataSource	{

		getReviews()	{

				return	this.knex

						.select('*')

						.from('reviews')

						.cache(REVIEW_TTL)

		}

		...

}

We	can	add	a		.leftJoin()	:

import	{	pick	}	from	'lodash'

class	SQL	extends	SQLDataSource	{

		async	getReviews()	{

				const	reviews	=	await	this.knex

						.select(

								'users.*',

								'users.created_at	as	users__created_at',

								'users.updated_at	as	users__updated_at',

								'reviews.*'

)

						.from('reviews')

						.leftJoin('users',	'users.id',	'reviews.author_id')

						.cache(REVIEW_TTL)

				return	reviews.map(review	=>	({

						...review,

						author:	{

								id:	review.author_id,

								created_at:	review.users__created_at,

								updated_at:	review.users__updated_at,

								...pick(review,	'first_name',	'last_name',	'email',	'photo')

						}

				}))

		}

		...

}

We	needed	to	change	our		.select('*')		because	both	users	and	reviews	have		created_at		and		updated_at	
columns.	We	also	needed	to	use		.map()		to	extract	out	the	user	fields	into	an		author		object.

Finally,	we	need	to	stop	the		Review.author		resolver	from	querying	the	database.	We	can	do	so	by	checking	if	the
	author		object	is	already	present	on	the	review	object:

	src/resolvers/Review.js	

export	default	{

		Query:	...

		Review:	{

Chapter	11:	Server	Dev

364

https://github.com/GraphQLGuide/guide-api/compare/sql3_0.2.0...sql4_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/sql3_0.2.0...sql4_0.2.0

				author:	(review,	_,	{	dataSources:	{	db	}	})	=>

						review.author	||	db.getUser({	id:	review.author_id	}),

				...

}

Now	when	we	run	the	same	GraphQL	query	in	Playground,	we	see	this	SQL	statement	is	executed:

SQL	(1.873	ms)	select	`reviews`.*,	`users`.`created_at`	as	`users__created_at`,	`users`.`updated_at`	as	`users_

_updated_at`	from	`reviews`	left	join	`users`	on	`users`.`id`	=	`reviews`.`author_id`

Success!	We	went	from	three	statements	down	to	one.	However,	there	are	still	inefficiencies.	The	SQL	statement	is
overfetching	in	two	ways:

It’s	selecting	all	fields,	whereas	the	GraphQL	query	only	needed		id	,		text	,	and		author.firstName	.
It	always	does	a	JOIN,	even	when	the	GraphQL	query	doesn’t	select		Review.author	.

We	can	write	code	to	address	both	these	things—by	looking	through	the	fourth	argument	to	resolvers,		info	,	which
contains	information	about	the	current	GraphQL	query,	and	seeing	which	fields	are	selected.	However,	it	would	be
easier	to	use	the	Join	Monster	library,	which	does	this	for	us.

To	set	it	up,	we	create	a	new	file	to	add	the	following	information	to	our	schema:

	src/joinMonsterAdapter.js	

import	joinMonsterAdapt	from	'join-monster-graphql-tools-adapter'

export	default	schema	=>

		joinMonsterAdapt(schema,	{

				Query:	{

						fields:	{

								user:	{

										where:	(users,	args)	=>	`${users}.id	=	${args.id}`

								}

						}

				},

				Review:	{

						sqlTable:	'reviews',

						uniqueKey:	'id',

						fields:	{

								author:	{

										sqlJoin:	(reviews,	users)	=>

												`${reviews}.author_id	=	${users}.id`

								},

								text:	{	sqlColumn:	'text'	},

								stars:	{	sqlColumn:	'stars'	},

								fullReview:	{	sqlDeps:	['text',	'stars',	'author_id']	},

								createdAt:	{	sqlColumn:	'created_at'	},

								updatedAt:	{	sqlColumn:	'updated_at'	}

						}

				},

				User:	{

						sqlTable:	'users',

						uniqueKey:	'id',

						fields:	{

								firstName:	{	sqlColumn:	'first_name'	},

								lastName:	{	sqlColumn:	'last_name'	},

								createdAt:	{	sqlColumn:	'created_at'	},

								updatedAt:	{	sqlColumn:	'updated_at'	},

								photo:	{	sqlDeps:	['auth_id']	}

						}

				}

		})

We’re	using	the		join-monster-graphql-tools-adapter		package,	which	we	need	when	defining	our	schema	in
SDL	format	via		graphql-tools		or	Apollo	Server.	(We	wouldn’t	need	an	adapter	if	we	defined	our	schema	in
code	with		graphql-js	.)

Chapter	11:	Server	Dev

365

https://join-monster.readthedocs.io/en/latest/
https://github.com/GraphQLGuide/guide-api/blob/sql4_0.2.0/src/joinMonsterAdapter.js
https://github.com/join-monster/join-monster-graphql-tools-adapter
https://www.apollographql.com/docs/graphql-tools/generate-schema/
https://github.com/graphql/graphql-js

We	tell	Join	Monster:

Which	table	each	type	corresponds	to.
Which	column	each	field	corresponds	to.
Query	information	for	fields	that	involve	SQL	statements.	For	example,		Query.user	’s	WHERE	clause	matches
the		id		argument	with	the		id		field	in	the	users	table,	and		Review.author		can	be	fetched	with	a	JOIN	on	the
users	table.
When	we	need	it	to	fetch	fields	that	aren’t	in	the	GraphQL	query.	For	example,	if		User.firstName		is	in	the	query,
it	knows	to	fetch	and	return		first_name	:

		firstName:	{	sqlColumn:	'first_name'	},

But	for		User.photo	,	there’s	no	photo	column	in	the	users	table.	So	our		User.photo		resolver	will	run,	but	it	needs
access	to	the	user’s		auth_id		field.	We	need	to	tell	Join	Monster	when		User.photo		is	in	the	query,	it	needs	to	fetch
	auth_id		from	the	database:

		photo:	{	sqlDeps:	['auth_id']	}

We	call	our	configuration	function	with	a	schema	created	by		makeExecutableSchema	,	and	then	we	pass	the	schema	to
	ApolloServer()		(whereas	before	we	were	passing		typeDefs		and		resolvers):

	src/index.js	

import	{	makeExecutableSchema	}	from	'graphql-tools'

import	joinMonsterAdapter	from	'./joinMonsterAdapter'

export	const	schema	=	makeExecutableSchema({

		typeDefs,

		resolvers

})

joinMonsterAdapter(schema)

const	server	=	new	ApolloServer({

		schema,

		dataSources,

		context,

		formatError

})

...

We’re	also	going	to	need	a	Knex	instance,	which	we’ll	add	here:

	src/data-sources/index.js	

import	Knex	from	'knex'

const	knexConfig	=	{

		client:	'sqlite3',

		connection:	{

				filename:	'./sql/dev.sqlite3'

		},

		useNullAsDefault:	true

}

export	const	knex	=	Knex(knexConfig)

And	lastly,	we	update	our		Query.user		and		Query.review		resolvers:

	src/resolvers/User.js	

Chapter	11:	Server	Dev

366

https://github.com/GraphQLGuide/guide-api/compare/sql3_0.2.0...sql4_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/sql3_0.2.0...sql4_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/sql3_0.2.0...sql4_0.2.0

import	joinMonster	from	'join-monster'

import	{	knex	}	from	'../data-sources/'

export	default	{

		Query:	{

				me:	...

				user:	(_,	__,	context,	info)	=>

						joinMonster(info,	context,	sql	=>	knex.raw(sql),	{

								dialect:	'sqlite3'

						}),

				...

		}

		...

}

	src/resolvers/Review.js	

import	joinMonster	from	'join-monster'

import	{	knex	}	from	'../data-sources/'

export	default	{

		Query:	{

				reviews:	(_,	__,	context,	info)	=>

						joinMonster(info,	context,	sql	=>	knex.raw(sql),	{

								dialect:	'sqlite3'

						})

		},

		...

}

That	was	certainly	simpler	than	the	long		getReviews()		method	we	wrote!	Instead,	we	give		joinMonster()		the		info	
and		context	,	and	it	gives	us	a	SQL	statement	to	run.

We	also	get	to	remove	some	resolvers	that	will	be	taken	care	of	by	Join	Monster:

User.firstName

User.lastName

User.createdAt

User.updatedAt

Review.author

Review.createdAt

Review.updatedAt

Now	when	we	query	for	a	user	and	select		firstName	,		createdAt	,	and		photo	:

this	SELECT	statement	gets	run:

GraphQL	server	running	at	http://localhost:4000/

		knex:query	SELECT

		knex:query			"user"."id"	AS	"id",

		knex:query			"user"."first_name"	AS	"firstName",

		knex:query			"user"."created_at"	AS	"createdAt",

Chapter	11:	Server	Dev

367

https://github.com/GraphQLGuide/guide-api/compare/sql3_0.2.0...sql4_0.2.0

		knex:query			"user"."auth_id"	AS	"auth_id"

		knex:query	FROM	users	"user"

		knex:query	WHERE	"user".id	=	1	+16s

Join	Monster	knows	to	get		1		from	the	query	argument	to	use	in	the	WHERE	clause,	it	knows	to	look	in	the	users
table,	and	it	knows	exactly	which	fields	to	fetch,	even		auth_id	.

Here’s	another	example	of		sqlDeps		working.	From	the	config:

		fullReview:	{	sqlDeps:	['text',	'stars',	'author_id']	},

When	we	send	this	query:

{

		reviews	{

				fullReview

		}

}

all	three	deps	are	selected:

		knex:query	SELECT

		knex:query			"reviews"."id"	AS	"id",

		knex:query			"reviews"."text"	AS	"text",

		knex:query			"reviews"."stars"	AS	"stars",

		knex:query			"reviews"."author_id"	AS	"author_id"

		knex:query	FROM	reviews	"reviews"	+0ms

SQL	(0.980	ms)	select	*	from	`users`	where	`id`	=	1

SQL	(0.367	ms)	select	*	from	`users`	where	`id`	=	1

Join	Monster	doesn’t	yet	support	a	joined	object	type	as	a	field	dependency,	which	is	why	we	list		author_id		instead
of		author		in		sqlDeps	,	and	why	the		Review.fullReview		resolver	still	has	to	call		db.getUser()	.

Lastly,	let’s	see	how	it	handles	a	reviews	query	with		author		selected:

{

		reviews	{

				author	{

						lastName

				}

		}

}

		knex:query	SELECT

		knex:query			"reviews"."id"	AS	"id",

		knex:query			"author"."id"	AS	"author__id",

		knex:query			"author"."last_name"	AS	"author__lastName"

		knex:query	FROM	reviews	"reviews"

		knex:query	LEFT	JOIN	users	"author"	ON	"reviews".author_id	=	"author".id	+3m

	Perfect!	It	only	fetched	the	fields	needed	and	used	a	single	statement.

REST
If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...rest)

Chapter	11:	Server	Dev

368

https://github.com/acarl005/join-monster/issues/398
https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...rest_0.1.0

Instead	of	fetching	our	data	directly	from	the	database,	we	may	want	to	make	use	of	our	company’s	legacy	REST
services	(yes,	any	service	that	doesn’t	speak	GraphQL	and	support	Apollo	Federation	is	now	a	legacy	service).
Or	we	may	want	to	use	data	from	third-party	REST	APIs.	In	either	case,	we	use		RESTDataSource		to	create	a	data
source	that	makes	REST	requests.

Users	of	the	Guide	site	need	to	be	able	to	purchase	the	book,	so	we	need	to	display	the	price	to	them.	And	let’s	say
we	wanted	to	make	the	book	more	affordable	in	locations	outside	of	the	United	States	where	it	was	originally	priced.
Purchasing	power	parity	(PPP)	produces	a	conversion	factor	based	on	the	actual	purchasing	power	in	a	different
location.	For	example,	if	the	book	is	$100	in	the	U.S.,	and	the	conversion	factor	for	India	is	0.26,	then	charging		100	*
0.26	=	$26		for	the	book	to	customers	in	India	would	make	it	equivalently	affordable	for	them.

Let’s	add	a	root	query	field		costInCents		that	returns	the	PPP-adjusted	cost	of	the	book.	To	do	that,	we’ll	need	to
query	a	PPP	API.		ppp.graphql.guide		is	a	REST	API	that	returns	PPP	information	when	given	a	country	code	(for
example,		/?country=IN		for	India).	We	can	try	it	out	in	the	browser:

ppp.graphql.guide/?country=IN

The	response	JSON	includes		pppConversionFactor	,	which	combines	the		ppp		value	and	exchange	rate	into	a	number
we	multiply	the	USD	price	by.

The	other	thing	we	need	to	figure	out	is	how	to	get	the	country	code	of	the	client.	We	could	look	at	the	IP	address
(which	is	either		req.headers['x-forwarded-for']	||	req.socket.remoteAddress)	and	use	a	GeoIP	lookup	API	(where	we
send	the	IP	address	and	get	back	a	location),	but	the	easier	way	is	to	use	the	Cloudflare	CDN,	which	adds	a	fairly
accurate		cf-ipcountry		HTTP	header	to	all	incoming	requests.	We	can	emulate	this	by	setting	the		cf-ipcountry	
header	in	Playground.

We	can	check	the	header	in	our	context	function,	and	add	the	country	code	to	our	context	object:

	src/context.js	

export	default	async	({	req	})	=>	{

		const	context	=	{}

Chapter	11:	Server	Dev

369

https://en.wikipedia.org/wiki/Purchasing_power_parity
https://ppp.graphql.guide/?country=IN
https://support.cloudflare.com/hc/en-us/articles/200168236-What-does-Cloudflare-IP-Geolocation-do-
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...rest_0.2.0

		...

		const	countryCode	=	req	&&	req.headers['cf-ipcountry']

		const	invalidCode	=	['XX',	'T1'].includes(countryCode)

		if	(countryCode	&&	!invalidCode)	{

				context.countryCode	=	countryCode

		}

		return	context

}

We’ll	then	be	able	to	access	the	code	from	our	data	source,	which	we	create	by	extending		RESTDataSource		from
	apollo-datasource-rest	.	There	are	five	main	things	to	know	about		RESTDataSource	:

Set		this.baseURL		to	the	REST	API’s	URL	in	the	constructor.
Use	HTTP	verb	methods	like		this.get(path,	queryParams,	options)	,		this.post()	,	etc.
It	deduplicates	REST	requests.
It	caches	responses	from	the	REST	API	based	on	the	responses’	cache	headers.
Define	a		willSendRequest()		method	if	you	want	to	modify	all	outgoing	requests—for	instance,	by	adding	an	auth
header:

class	SomePrivateAPI	extends	RESTDataSource	{

		...

		willSendRequest(request)	{

				request.headers.set('Authorization',	this.context.token);

		}

}

Here’s	our	implementation,	using		this.baseURL	,		this.get()	,	and		this.context	:

	src/data-sources/PPP.js	

import	{	RESTDataSource	}	from	'apollo-datasource-rest'

export	default	class	PPP	extends	RESTDataSource	{

		constructor()	{

				super()

				this.baseURL	=	`https://ppp.graphql.guide`

		}

		async	getConversionFactor()	{

				const	{	countryCode	}	=	this.context

				if	(!countryCode)	{

						return	1

				}

				const	data	=	await	this.get('/',	{	country:	countryCode	})

				return	data.pppConversionFactor	||	1

		}

}

We	don’t	need	to	define		willSendRequest()		because	it’s	a	public	API.	We	only	need	a	single	method
	getConversionFactor()	,	which	makes	a	GET	request	of	the	form		/?country=[countryCode]	.	It	defaults	to	a	factor	of	1,
which	results	in	the	full	price.

Next	we	need	to	add	this	to	our		dataSources		so	we	can	access	it	from	our	resolvers:

	src/data-sources/index.js	

import	PPP	from	'./PPP'

export	default	()	=>	({

		reviews:	new	Reviews(db.collection('reviews')),

		users:	new	Users(db.collection('users')),

Chapter	11:	Server	Dev

370

https://www.npmjs.com/package/apollo-datasource-rest
https://khalilstemmler.com/blogs/graphql/how-apollo-rest-data-source-caches-api-calls/
https://github.com/GraphQLGuide/guide-api/blob/rest_0.2.0/src/data-sources/PPP.js
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...rest_0.2.0

		ppp:	new	PPP()

})

export	{	Reviews,	Users,	Github,	PPP	}

And	now	adding	our	resolver:

	src/resolvers/PPP.js	

const	BOOK_PRICE	=	3900

export	default	{

		Query:	{

				costInCents:	async	(_,	__,	{	dataSources	})	=>

						Math.round((await	dataSources.ppp.getConversionFactor())	*	BOOK_PRICE)

		}

}

	src/resolvers/index.js	

import	PPP	from	'./PPP'

const	resolversByType	=	[Review,	User,	Date,	Github,	PPP]

...

Lastly,	we	add	the		costInCents		root	Query	field:

	src/schema/PPP.graphql	

extend	type	Query	{

		costInCents:	Int!

}

	src/schema/schema.graphql	

...

#import	'PPP.graphql'

Now	we	should	be	able	to	get	3900	in	response	to	a		{	costInCents	}		query:

This	is	defaulting	to	the	US	price,	since	there’s	no	header.	When	we	add	a	country	header,	we’ll	see	a	different	result:

{

		"cf-ipcountry":	"IN"

}

Chapter	11:	Server	Dev

371

https://github.com/GraphQLGuide/guide-api/blob/rest_0.2.0/src/resolvers/PPP.js
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...rest_0.2.0
https://github.com/GraphQLGuide/guide-api/blob/rest_0.2.0/src/schema/PPP.graphql
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...rest_0.2.0

It	works!	 	The	only	thing	left	to	check	is	caching.		RESTDataSource		only	caches	responses	that	contain	a		Cache-
Control		header.	To	see	whether		ppp.graphql.guide		uses	cache	headers,	we	can	use	a	command-line	tool	called
httpie	(a	modern	alternative	to		wget):

brew	install	httpie

$	http	https://ppp.graphql.guide/?country=IN

HTTP/1.1	200	OK

Connection:	keep-alive

Content-Type:	application/json;	charset=utf-8

cache-control:	max-age=604800,	public

content-length:	278

date:	Wed,	05	Feb	2020	07:27:47	GMT

etag:	W/"116-6RgJXuLuRrGbBbX6QFViYUXAREs"

server:	now

strict-transport-security:	max-age=63072000

x-now-cache:	MISS

x-now-id:	iad1:sfo1:bxvvv-1580887666054-bbdc016271ef

x-now-trace:	iad1

{

				"countryCode":	"IN",

				"currency":	{

								"code":	"INR",

								"exchangeRate":	71.295489,

								"name":	"Indian	rupee",

								"symbol":	"₹"
				},

				"ppp":	18.553,

				"pppConversionFactor":	0.2602268426828519

}

At	the	top	of	a	list	of	headers,	which	includes	a		cache-control		header	(HTTP	headers	aren’t	case-sensitive)
instructing	the	recipient	to	cache	the	response	for	604800	seconds	(one	week).	So	now	our	data	source	should	be
saving	responses	to	the	cache,	but	how	can	we	check?	If	we	were	still	using	Redis	as	a	cache,	we	could	check	Redis,
but	instead	the	data	source	is	using	the	default	in-memory	cache.	Without	Redis,	we	can	run	tcpdump	to	see	when
our	development	machine	makes	requests	to		ppp.graphql.guide	.	When	a	country	is	already	cached,	we	shouldn’t
see	the	request.	In	one	terminal,	we	run	this	command:

$	sudo	tcpdump	"tcp[tcpflags]	&	(tcp-syn)	!=	0	and	dst	ppp.graphql.guide"

tcpdump:	data	link	type	PKTAP

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode

listening	on	pktap,	link-type	PKTAP	(Apple	DLT_PKTAP),	capture	size	262144	bytes

Chapter	11:	Server	Dev

372

https://httpie.org/
https://en.wikipedia.org/wiki/Tcpdump

And	then	we	change	the	country	header	in	Playground	to	one	we	haven’t	used,	e.g.,		CN		for	China.	On	the	first	query,
we	should	see	this	line	printed:

04:30:18.705846	IP	macbook.fios-router.home.52591	>	ec2-3-210-90-207.compute-1.amazonaws.com.https:	Flags	[S],	

seq	995289110,	win	65535,	options	[mss	1460,nop,wscale	6,nop,nop,TS	val	1101427783	ecr	0,sackOK,eol],	length	0

which	signifies	a	new	request	to		ppp.graphql.guide	.	If	we	continue	to	re-issue	the	Playground	query	with	the	same
country	header,	no	more	lines	should	be	printed,	which	means	the	data	source	used	the	in-memory	cache	instead	of
making	a	request.

GraphQL
If	there’s	a	GraphQL	API	that	we	want	to	use	data	from,	we	have	a	few	options:

If	we	want	to	include	parts	of	the	API’s	schema	in	our	schema:
If	it	supports	federation,	we	should	use	that.	For	example,	FaunaDB	is	working	on	support,	and	some	third-
party	services	we	use	might	have	a	GraphQL	API	that	supports	federation.	And	if	we	have	control	over	the
API	(e.g.,	if	it’s	one	of	our	services),	we	can	add	support	for	federation.
We	can	use	schema	stitching	if	the	API	doesn’t	support	federation.	But	unless	we	want	a	significant	part	of
the	API’s	schema,	it	may	be	easier	to	use	one	of	the	below	methods	instead.

If	we	just	want	to	use	data	from	the	API	in	our	resolvers:
Use		GraphQLDataSource		from		apollo-datasource-graphql		to	create	a	data	source	class.	Similarly	to
	RESTDataSource	,	we	can	define	a		willSendRequest		method	that	adds	an	authorization	header	to	all	requests.
But	in	our	data	fetching	methods,	instead	of		this.get('path')	,	we	use		this.query(QUERY_DOCUMENT)	.
Use		graphql-request		in	our	resolvers	to	fetch	data	from	the	data	source	(similar	to	our		githubStars	
subscription	where	we	fetch	data	from	GitHub’s	GraphQL	API).	While		graphql-request		is	nice	for	extremely
simple	uses	like		githubStars	,	usually		GraphQLDataSource		is	a	better	choice,	as	it’s	a	data	source	class.

Custom	data	source
When	we’ve	been	talking	about	data	sources,	sometimes	we’re	referring	to	the	classes	we	create	(PPP		in	the	below
snippet),	and	sometimes	we’re	referring	to	the	parent	classes	that	we	get	from	an	npm	library	and	extend
(RESTDataSource).

import	{	RESTDataSource	}	from	'apollo-datasource-rest'

class	PPP	extends	RESTDataSource	{

		...

}

If	there’s	a	type	of	database	or	API	for	which	we	can’t	find	an	existing	library	and	parent	class,	we	can	write	our	own!
A	data	source	parent	class	has	most	or	all	of	the	following	pieces:

Extends	the		DataSource		class	from	the		apollo-datasource		library
Some	way	of	receiving	information	about	the	database	or	API	(either	a	constructor	parameter	or	an	instance
variable	like		this.baseURL		in		RESTDataSource)
An		initialize()		method	that	receives	the	context	and	an	optional	cache
Calls	lifecycle	methods	that	can	be	defined	by	the	child	class,	like		willSendRequest()		and		didEncounterError()	
in		RESTDataSource	
Methods	for	fetching	data,	which	use	DataLoader	and/or	the	cache
Methods	for	changing	data,	which	might	invalidate	cached	data

Chapter	11:	Server	Dev

373

https://fauna.com/blog/fauna-engineering-looking-back-at-2019
https://www.apollographql.com/docs/graphql-tools/schema-stitching/
https://github.com/poetic/apollo-datasource-graphql#readme

Let’s	see	all	these	in	a	parent	class	called		FooDataSource		for	an	imaginary	Foo	document	database.	It’s	passed	a	Foo
database	client		dbClient	,	which	has	these	fields:

	dbClient.connectionURI	:	the	URI	of	the	database	server
	dbClient.getByIds(ids)	:	given	an	array	of	IDs,	returns	the	associated	documents	from	the	database
	dbClient.update(id,	newDoc)	:	updates	the	document	with	the	given		id		to	the		newDoc	

import	{	DataSource	}	from	'apollo-datasource'

import	{	InMemoryLRUCache	}	from	'apollo-server-caching'

import	DataLoader	from	'dataloader'

class	FooDataSource	extends	DataSource	{

		constructor(dbClient)	{

				super()

				this.db	=	dbClient

				this.loader	=	new	DataLoader(ids	=>	dbClient.getByIds(ids))

		}

		initialize({	context,	cache	}	=	{})	{

				this.context	=	context

				this.cache	=	cache	||	new	InMemoryLRUCache()

		}

		didEncounterError(error)	{

				throw	error

		}

		cacheKey(id)	{

				return	`foo-${this.db.connectionURI}-${id}`

		}

		async	get(id,	{	ttlInSeconds	}	=	{})	{

				const	cacheDoc	=	await	cache.get(this.cacheKey(id))

				if	(cacheDoc)	{

						return	JSON.parse(cacheDoc)

				}

				const	doc	=	await	this.loader.load(id)

				if	(ttlInSeconds)	{

						cache.set(this.cacheKey(id),	JSON.stringify(doc),	{	ttl:	ttlInSeconds	})

				}

				return	doc

		}

		async	update(id,	newDoc)	{

				try	{

						await	this.db.update(id,	newDoc)

						this.cache.delete(this.cacheKey(id))

				}	catch	(error)	{

						this.didEncounterError(error)

				}

		}

}

Let’s	look	at	each	part:

		constructor(dbClient)	{

				super()

				this.db	=	dbClient

				this.loader	=	new	DataLoader(ids	=>	dbClient.getByIds(ids))

		}

The	constructor	saves	the	db	client	as	an	instance	variable	to	be	used	later.	It	also	creates	an	instance	of		DataLoader	
to	use	for	this	request	(a	new	data	source	object	will	be	created	for	each	GraphQL	request).	DataLoader	needs	to
know	how	to	fetch	a	list	of	documents	by	their	IDs.	Here	we’re	assuming	the	array	of	documents	that		getByIds()	

Chapter	11:	Server	Dev

374

returns	is	in	the	same	order	and	has	the	same	length	as		ids		(a	requirement	of	DataLoader);	otherwise,	we’d	need	to
reorder	them.

DataLoader	is	a	library	that	does	batching	and	memoization	caching	for	the	queries	our	data	source	makes	within	a
single	GraphQL	request.	Batching	converts	multiple	database	requests	for	individual	documents	into	a	single	request
for	all	the	documents,	and	memoization	caching	deduplicates	multiple	requests	for	the	same	document.

		initialize({	context,	cache	}	=	{})	{

				this.context	=	context

				this.cache	=	cache	||	new	InMemoryLRUCache()

		}

	initialize()		is	called	automatically	by	Apollo	Server.	If	Apollo	Server	has	been	configured	with	a	global	cache,	we
use	that;	otherwise,	we	create	an	in-memory	cache.

		didEncounterError(error)	{

				throw	error

		}

When	an	error	occurs,	we	call		this.didEncounterError()	,	which	a	child	class	can	override.

		cacheKey(id)	{

				return	`foo-${this.db.connectionURI}-${id}`

		}

We	use	the		connectionURI		in	the	cache	key	to	avoid	collisions.	A	collision	could	occur	if	there	were	a	global	cache
and	multiple	Foo	data	sources	connected	to	different	Foo	databases,	and	one	database	had	a	document	with	the
same	ID	as	a	document	in	another	database.

		async	get(id,	{	ttlInSeconds	}	=	{})	{

				const	cacheDoc	=	await	cache.get(this.cacheKey(id))

				if	(cacheDoc)	{

						return	JSON.parse(cacheDoc)

				}

				const	doc	=	await	this.loader.load(id)

				if	(ttlInSeconds)	{

						cache.set(this.cacheKey(id),	JSON.stringify(doc),	{	ttl:	ttlInSeconds	})

				}

				return	doc

		}

We	provide	a		get(id)		method	to	be	used	in	resolvers,	with	an	optional		ttlInSeconds		if	the	caller	wants	the	result	to
be	cached.	First,	we	check	if	the	doc	is	already	in	the	cache.	If	it	is,	we	parse	it	(cache	values	are	always	strings)	and
return	it.	Then	we	ask	DataLoader	to	get	the	document.	It	will:

Take	all	the	calls	to		.load(id)	.	(The	resolver—or	other	resolvers—might	be	calling		.get()		around	the	same
time	as	this	is	running.)
Deduplicate	them	(when		.get()		is	called	multiple	times	with	the	same	ID).
Put	all	the	distinct	IDs	into	an	array	for	a	batch	request	(the	call	to		dbClient.getByIds()		in	the	constructor).

Once	the	batch	request	completes,	DataLoader	returns	on	this	line	the	one	document	we	need:

				const	doc	=	await	this.loader.load(id)

Then	if		ttlInSeconds		was	provided,	we	cache	the	document	for	that	length	of	time.	And	finally,	we	return	it!

Chapter	11:	Server	Dev

375

https://github.com/graphql/dataloader

		async	update(id,	newDoc)	{

				try	{

						await	this.db.update(id,	newDoc)

						this.cache.delete(this.cacheKey(id))

				}	catch	(error)	{

						this.didEncounterError(error)

				}

		}

We	provide	an		update(id,	newDoc)		method	to	be	used	in	resolvers.	After	a	successful	update,	it	deletes	the	old
document	from	the	cache.	Another	possible	implementation	would	be	to	overwrite	the	previous	cache	entry	with
	newDoc	—in	this	case,	we’d	need	a	value	for		ttl		and	could	add	a	third	argument	to		update()		with	a		ttlInSeconds	.

Once	we	have	the	parent	class	complete,	we	can	use	it	by	creating	one	or	more	child	classes.	In	the	case	of	Foo,
we’d	create	one	for	each	database,	but	with	some	data	sources	we	might	do	one	for	each	table	or	collection.

Here’s	an	example	child	class:

import	FooDataSource	from	'./FooDataSource'

import	{	reportError	}	from	'./utils'

export	default	class	MyFooDB	extends	FooDataSource	{

		async	updateFields(id,	fields)	{

				const	doc	=	await	this.get(id)

				return	this.update(id,	{

						...doc,

						...fields

				})

		}

		didEncounterError(error)	{

				reportError(error)

		}

}

The	child	class	overrides		didEncounterError		to	use	its	own	error	reporting	service	instead	of	throwing.	It	adds	a	new
method	that	calls	the	parent’s		.get()		and		.update()	.	When	we	create	the	data	source,	we	give	the	database	client
to	the	constructor:

import	FooClient	from	'imaginary-foo-library'

import	MyFooDB	from	'./MyFooDB'

const	fooClient	=	new	FooClient({	uri:	'https://foo.graphql.guide:9001'	})

const	dataSources	=	()	=>	({

		myFoos:	new	MyFooDB(fooClient)

})

And	now	inside	our	resolvers,	we	can	use		context.dataSources.myFoos		and	all	the	methods	defined	in	the	parent	class
(FooDataSource)	and	child	class	(MyFooDB):

const	resolvers	=	{

		Query:	{

				getFoo:	(_,	{	id	},	context)	=>	

						context.dataSources.myFoos.get(id,	{	ttlInSeconds:	60	})

		},

		Mutation:	{

				updateFoo:	async	(_,	{	id,	fields	},	context)	=>	{

						if	(context.isAdmin)	{

								context.dataSources.myFoos.updateFields(id,	fields)

						}

				}

		}

}

Chapter	11:	Server	Dev

376

These	example	resolvers	use		.get()		from		FooDataSource		and		.updateFields()		from		MyFooDB	.

Prisma
This	section	will	be	written	after	the	release	of	Prisma	2.

Extended	topics
Mocking
Pagination
File	uploads
Schema	design
Apollo	federation
Schema	change	validation
Subscription	design
Auth	options
Security
Caching
Custom	schema	directives
Performance
Future

This	section	includes	miscellaneous	server	topics	that	we	didn’t	get	to	in	the	main-line	Building	tutorial,	the	Testing
sequence,	the	Production	section,	or	the	data	sources	section.	Some	topics	are	short,	and	some	are	long	(yes,	we
know—the	length	of	this	chapter	is	ridiculous).	Most	of	the	code	will	be	branched	off	of	25,	the	end	of	the	Testing
sequence.

Mocking
If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...mocking)

Mocking	API	responses—providing	the	client	with	fake	(mock)	data—is	easy	in	GraphQL	because	we	have	a	schema
that	tells	us	the	structure	of	the	data	and	the	type	of	each	field.	And	it’s	super	easy	with	Apollo	Server—we	just	add
	mock:	true	:

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		mock:	true

})

Apollo	needs	to	know	how	to	mock	custom	types,	so	we	need	a	mock		Date		for	our	app:

	src/index.js	

const	mocks	=	{

		Date:	()	=>	new	Date()

}

const	server	=	new	ApolloServer({

		typeDefs,

		resolvers,

		dataSources,

Chapter	11:	Server	Dev

377

https://www.notion.so/Is-Prisma-2-Ready-8b3fba3eaf5b4bf3ab7102fd94f56148
https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...mocking_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...mocking_0.2.0

		context,

		formatError,

		mocks

})

Now	when	we	make	a		reviews		query,	all	the	fields	we	select	get	returned	with	mock	data:

If	we	want	them	to	look	more	like	real	data,	we	can	use	the		casual		library	for	fake	data	generation:

import	casual	from	'casual'

const	mocks	=	{

		Date:	()	=>	new	Date(),

		Review:	()	=>	({

				text:	casual.sentence,

				stars:	()	=>	casual.integer(0,	5)

		}),

		User:	()	=>	({

				firstName:	casual.first_name,

				lastName:	casual.last_name,

				username:	casual.username,

				email:	casual.email,

				photo:	`https://placekitten.com/100/100`

		})

}

Chapter	11:	Server	Dev

378

https://github.com/boo1ean/casual

To	make	the	results	array	have	a	variable	number	of	results	(the	default	is	two	items	for	all	lists),	we	could	add	this	to
make	it	return	between	0	and	3	items:

import	{	ApolloServer,	MockList	}	from	'apollo-server'

const	mocks	=	{

		...

		Query:	()	=>	({

				reviews:	()	=>	new	MockList([0,	3])

		})

If	we	created	a	new	app	with	mocking,	and	then	we	wanted	to	start	writing	real	resolvers,	we	could	add		resolvers	
and		mockEntireSchema:	false	:

const	server	=	new	ApolloServer({

		typeDefs,

		mocks,

		resolvers,

		mockEntireSchema:	false

})

Then	our	resolvers	would	be	used	first,	and	mocks	would	be	used	for	all	the	fields	for	which	we	hadn’t	yet	written
resolvers.

We	can	also	mock	a	schema	written	in	a	different	language	than	JavaScript	or	a	schema	from	a	third-party	GraphQL
API.	First	we	download		graphql-cli	,	and	then	we	use	it	to	download	the	target	API’s	schema:

$	npm	i	-g	graphql-cli

$	graphql	get-schema	-e	https://api.spacex.land/graphql	-o	schema.json

Then	we	start	a	simple	Apollo	Server:

Chapter	11:	Server	Dev

379

const	{	buildClientSchema	}	=	require('graphql')

const	introspectionResult	=	require('./schema.json')

const	{	ApolloServer	}	=	require('apollo-server')

const	schema	=	buildClientSchema(introspectionResult.data)

const	server	=	new	ApolloServer({

		schema,

		mocks:	true

})

server.listen().then(({	url	})	=>	{

		console.log(`Server	ready	at	${url}`)

})

To	test	it,	we	do:

$	git	clone	https://github.com/GraphQLGuide/mock-external-schema.git

$	cd	mock-external-schema

$	npm	install

$	npm	start

And	we	open	localhost:4000	to	issue	a	query:

Chapter	11:	Server	Dev

380

http://localhost:4000

Pagination
Offset-based
Cursors

after	an	ID
Relay	cursor	connections

Pagination	is	the	general	term	for	requesting	chunks	of	a	list	of	data	instead	of	the	whole	list,	because	requesting	the
whole	list	would	take	too	much	time	or	resources.	In	Chapter	6:	Paginating,	we	covered	different	types	of	pagination
from	the	client’s	perspective.	In	this	section,	we’ll	cover	them	from	the	server’s	perspective:	Defining	the	schema	and
writing	code	that	fetches	the	requested	chunk	of	data	from	the	database.

These	are	the	main	types	of	pagination:

Offset-based:	Request	a	chunk	at	an	offset	from	the	beginning	of	the	list.

Chapter	11:	Server	Dev

381

Pages:	Request	Nth	page	of	a	certain	size.	For	instance,		page:	3,	size:	10		would	be	items	21-30.
Skip	&	limit:	Request	limit	items	after	skipping	skip	items.	For	instance		skip:	40,	limit:	20		would	be	items
41-60.

Cursor-based:	Request	a	chunk	before	or	after	a	cursor.	Conceptually,	a	cursor	is	a	pointer	to	a	location	in	a
query’s	result	set.	There’s	a	range	of	ways	to	implement	it,	both	in	terms	of	what	arguments	are	used	and	how
the	schema	looks.	Here	are	a	couple	options:

after	an	ID:	Request	limit	items	after	some	sortable	field,	like		id	—in	MongoDB,	ObjectIds	sort	by	the	time
they	were	created,	like	a		createdAt		timestamp.	This	is	the	simplified,	cursor-like	system	used	in	Chapter	6:
Cursors.	For	instance		after:	'5d3202c4a044280cac1e2f60',	limit:	10		would	be	the	10	items	after	that		id	.
Relay	cursor	connections:	Request	the	first	N	items	after	an	opaque	cursor	(or	last	N	items	before	a	cursor).
For	instance,		first:	10,	after:	'abcabcabc'	,	where		'abcabcabc'		contains	an	encoded	result	set	location.

In	Chapter	6,	we	used		[id]:[sort	order]		as	the	cursor	format	(like		'100:createdAt_DESC').	However,	it’s	best
practice	for	the	client	to	treat	cursors	as	opaque	strings,	and	that’s	usually	facilitated	by	the	server	Base64-
encoding	the	string.	So	the	server	would	return		'MTAwOmNyZWF0ZWRBdF9ERVND'		as	the	cursor	instead	of
	'100:createdAt_DESC'	.

The	downsides	to	offset-based	are:

When	the	result	set	changes	(items	added	or	removed),	we	might	miss	or	get	duplicate	results.	(We	discuss	this
scenario	in	Chapter	6:	skip	&	limit.)
The	performance	of	a		LIMIT	x	OFFSET	y		query	does	not	scale	well	for	large	data	sets	in	many	databases,
including	PostgreSQL,	MySQL,	and	MongoDB.	(Note	that	depending	on	the	flexibility	of	our	collection	structure,
we	might	be	able	to	use	the	bucket	pattern	in	MongoDB	to	scale	this	query	well.)

The	downsides	to	cursor-based	are:

We	can’t	jump	ahead,	for	example,	from	page	1	to	page	5.
The	implementation	is	a	little	more	complex.

In	Offset-based,	we’ll	implement	skip	&	limit.	Then	in	Cursor-based,	we’ll	implement	after	an	ID	and	Relay	cursor
connections.

Offset-based

If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...pagination)

In	skip	&	limit,	we	have	three	arguments:		skip	,		limit	,	and		orderBy	.	Let’s	update	the	schema	first,	then	the
resolver,	and	lastly	the	data	sources.

For		orderBy	,	we	need	a	new	enum	type.	The		skip		and		limit		arguments	are	integers.	We	can	set	default	values
for	each	so	that	we	can	make	each	argument	nullable.

Here’s	the	current		reviews		Query:

	src/schema/Review.graphql	

extend	type	Query	{

		reviews:	[Review!]!

}

Here	we	add	the	arguments:

enum	ReviewOrderBy	{

		createdAt_ASC	

		createdAt_DESC

}

Chapter	11:	Server	Dev

382

https://www.mongodb.com/blog/post/paging-with-the-bucket-pattern--part-1
https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...pagination_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...pagination_0.2.0

extend	type	Query	{

		reviews(skip:	Int,	limit:	Int,	orderBy:	ReviewOrderBy):	[Review!]!

}

The	convention	for	enum	values	is		ALL_CAPS	,	but		createdAt_ASC		makes	it	more	clear	than		CREATED_AT_ASC		that	it’s
sorting	by	the		Review.createdAt		field.	The	subsequent	underscore	and	all-caps		ASC/DESC		still	demonstrate	they’re
enum	values.

Learn	the	rules	so	you	know	how	to	break	them	properly.	—The	Dalai	Lama’s	Fifth	Rule	of	Living

Our	resolver	is	currently	very	simple:

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	(_,	__,	{	dataSources	})	=>	dataSources.reviews.all()

		},

		...

}

We	need	to	add	the	arguments	and	check	them.	GraphQL	execution	adequately	checks		orderBy		(so	we	know	it	will
either	be	the	string		'createdAt_DESC'		or		'createdAt_ASC'),	but	it	only	checks	that		skip		and		limit		are	integers.	We
also	need	to	make	sure	they’re	not	invalid	or	restricted	values.	It	doesn’t	make	sense	for		skip		to	be	less	than	0,	nor
for		limit		to	be	less	than	1.	We’ll	also	prevent	large	values	of		limit		to	protect	against	denial	of	service	attacks.

const	MAX_PAGE_SIZE	=	100

export	default	{

		Query:	{

				reviews:	(

						_,

						{	skip	=	0,	limit	=	10,	orderBy	=	'createdAt_DESC'	},

						{	dataSources	}

)	=>	{

						const	errors	=	{}

						if	(skip	<	0)	{

								errors.skip	=	`must	be	non-negative`

						}

						if	(limit	<	1)	{

								errors.limit	=	`must	be	positive`

						}

						if	(limit	>	MAX_PAGE_SIZE)	{

								errors.limit	=	`cannot	be	greater	than	${MAX_PAGE_SIZE}`

						}

						if	(!isEmpty(errors))	{

								throw	new	InputError({	review:	errors	})

						}

						return	dataSources.reviews.getPage({	skip,	limit,	orderBy	})

				}

		},

		...

}

Lastly,	call	a	new	data	source	method		getPage	,	which	we’ll	define	next.	Here’s	our	old		.all()		method:

	src/data-sources/Reviews.js	

export	default	class	Reviews	extends	MongoDataSource	{

		all()	{

				return	this.collection.find().toArray()

Chapter	11:	Server	Dev

383

https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...pagination_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...pagination_0.2.0

		}

		...

}

We	replace	it	with:

export	default	class	Reviews	extends	MongoDataSource	{

		getPage({	skip,	limit,	orderBy	})	{

				return	this.collection

						.find()

						.sort({	_id:	orderBy	===	'createdAt_DESC'	?	-1	:	1	})

						.skip(skip)

						.limit(limit)

						.toArray()

		}

		...

}

	_id		is	an	ObjectId,	so	sorting	by		_id		is	equivalent	to	sorting	by	a		createdAt		timestamp.

Let’s	first	test	the	error	case	in	Playground:

And	with	default	arguments,	we	see	the	most	recent	10	reviews:

Chapter	11:	Server	Dev

384

And	with		skip:	5,	limit:	3,	orderBy:	createdAt_ASC	,	we	see	the	6th	through	8th	reviews:

Chapter	11:	Server	Dev

385

Cursors

There	are	a	number	of	ways	to	do	cursor-based	pagination:

	after		an	ID:	Use	three	arguments	to	support	cursor-like	pagination	for	queries	sorted	by	a	single	field
(createdAt).
	first/after	&	last/before	:		first		and		last		are	equivalent	to		limit	,	and		after/before		is	the	cursor.	These
are	added	as	arguments,	but	the	client	has	to	get	the	cursor	from	the	server,	which	requires	adding	a		cursor	
field	to	the	schema.	We	can	do	this	a	few	ways:
1.	 Add		cursor		to	each	object.
2.	 Have	each	paginated	query	return	a		startCursor	,	an		endCursor	,	and		nodes	.
3.	 Use	Relay	cursor	connections,	where	the	paginated	query	returns	edges,	which	each	contain	a		cursor		and

a		node	.

In	this	section,	we	will	implement		after		an	ID	and	Relay	cursor	connections.

#1	would	have		Review.cursor	:

type	Review	{

		id:	ID!

		author:	User!

		text:	String!

		stars:	Int

		fullReview:	String!

		createdAt:	Date!

		updatedAt:	Date!

		cursor:	String

}

enum	ReviewOrderBy	{

		createdAt_ASC

		createdAt_DESC

}

extend	type	Query	{

		reviews(first:	Int,	after:	String):	[Review!]!

		get(id:	ID!):	Review

}

One	downside	to	this	approach	is	the	cursor	isn’t	really	part	of	a	Review’s	data.	For	instance,	it’s	not	applicable	when
we	do	a		get		Query	to	fetch	a	single	Review	by	ID.

#2	would	fix	that	issue,	since	the	cursor	is	no	longer	a	Review	field:

type	ReviewsResult	{

Chapter	11:	Server	Dev

386

		nodes:	[Review!]!

		startCursor:	String!

		endCursor:	String!

}

extend	type	Query	{

		reviews(first:	Int,	after:	String,	last:	Int,	before:	String):	ReviewsResult!

		get(id:	ID!):	Review

}

We	could	also	add	information	about	the	data	set—the	total	number	of	items	and	whether	there	are	more	items
available	to	query:

type	ReviewsResult	{

		nodes:	[Review!]!

		startCursor:	String!

		endCursor:	String!

		totalCount:	Int!

		hasNextPage:	Boolean!

		hasPreviousPage:	Boolean!

}

#3	has	the	most	involved	schema,	which	we’ll	go	over	in	the	last	section:

type	ReviewEdge	{

		cursor:	String!

		node:	Review

}

type	PageInfo	{

		startCursor:	String!

		endCursor:	String!

		hasNextPage:	Boolean!

		hasPreviousPage:	Boolean!

}

type	ReviewsConnection	{

		edges:	[ReviewEdge]

		pageInfo:	PageInfo!

		totalCount:	Int!

}

extend	type	Query	{

		reviews(first:	Int,	after:	String,	last:	Int,	before:	String):	ReviewsConnection!

		get(id:	ID!):	Review

}

The	main	two	benefits	to	#3	over	#2	are:

We	have	the	cursor	of	every	object—not	just	the	start	and	end	cursors—so	we	can	request	the	next	page	starting
at	any	location	in	the	list.
We	can	add	more	information	to	the	edge.	For	instance	if	we	had	a	social	platform	with	a	paginated
	User.friends		field	returning	a		FriendsConnection		with		edges:	[FriendEdge]	,	a		FriendEdge		could	include:

type	FriendEdge	{

		cursor:	String!

		node:	Friend

		becameFriendsOn:	Date

		mutualFriends:	[Friends]

		photosInCommon:	[Photo]

}

after	an	ID

Chapter	11:	Server	Dev

387

If	you’re	jumping	in	here,		git	checkout	pagination_0.1.0		(tag	pagination_0.1.0,	or	compare
pagination...pagination2)

In	this	section	we’ll	do	a	limited	cursor-like	pagination	with	these	three	arguments:

	src/schema/Review.graphql	

extend	type	Query	{

		reviews(after:	ID,	limit:	Int,	orderBy:	ReviewOrderBy):	[Review!]!

}

The	only	change	from	skip	&	limit	is	instead	of	skiping	a	number	of	results,	we	return	those	after	an	ID.	In	our	resolver,
we	change		skip	->	after		and	remove		skip	’s	error	checking:

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	(

						_,

						{	after,	limit	=	10,	orderBy	=	'createdAt_DESC'	},

						{	dataSources	}

)	=>	{

						const	errors	=	{}

						if	(limit	<	0)	{

								errors.limit	=	`must	be	non-negative`

						}

						if	(limit	>	MAX_PAGE_SIZE)	{

								errors.limit	=	`cannot	be	greater	than	${MAX_PAGE_SIZE}`

						}

						if	(!isEmpty(errors))	{

								throw	new	InputError({	review:	errors	})

						}

						return	dataSources.reviews.getPage({	after,	limit,	orderBy	})

				}

		},

		...

}

We	could	also	check	whether		after		is	a	valid		ObjectId		(as	we	do	in	the		Query.user		resolver).

In	the	data	source,	if		after		is	provided	(it’s	optional),	we	filter	using	either		$lt		or		$gt		(less	than	/	greater	than):

	src/data-sources/Review.js	

import	{	ObjectId	}	from	'mongodb'

export	default	class	Reviews	extends	MongoDataSource	{

		getPage({	after,	limit,	orderBy	})	{

				const	filter	=	{}

				if	(after)	{

						const	afterId	=	ObjectId(after)

						filter._id	=

								orderBy	===	'createdAt_DESC'	?	{	$lt:	afterId	}	:	{	$gt:	afterId	}

				}

				return	this.collection

						.find(filter)

						.sort({	_id:	orderBy	===	'createdAt_DESC'	?	-1	:	1	})

						.limit(limit)

						.toArray()

		}

		...

}

Chapter	11:	Server	Dev

388

https://github.com/GraphQLGuide/guide-api/tree/pagination_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/pagination_0.1.0...pagination2_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/pagination_0.2.0...pagination2_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/pagination_0.2.0...pagination2_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/pagination_0.2.0...pagination2_0.2.0

To	test,	first	let’s	get	the	first	5	reviews	with	their	IDs:

Then	we	take	the	last	ID	and	use	it	for	the		after		argument:

Chapter	11:	Server	Dev

389

It	works!	If	we	wanted	to	paginate	the	other	way	from	review	#7,	we	would	switch	the		orderBy	:

Relay	cursor	connections

If	you’re	jumping	in	here,		git	checkout	pagination2_0.1.0		(tag	pagination2_0.1.0,	or	compare
pagination2...pagination3)

Relay	cursor	connections	are	defined	by	the	Relay	Cursor	Connections	spec.	It	specifies	a	standard	way	of
implementing	cursor	pagination	so	that	different	clients	and	tools	(like	the	Relay	client	library)	can	depend	on	that
specific	schema	structure.	Its	benefits	over	other	cursor	structures	are	listed	at	the	end	of	the	Cursors	section	above.
Its	cost	is	a	more	complex	schema,	like	this	one:

	src/schema/Review.graphql	

type	ReviewEdge	{

		cursor:	String!

		node:	Review

Chapter	11:	Server	Dev

390

https://github.com/GraphQLGuide/guide-api/tree/pagination2_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/pagination2_0.1.0...pagination3_0.1.0
https://facebook.github.io/relay/graphql/connections.htm
https://github.com/GraphQLGuide/guide-api/compare/pagination2_0.2.0...pagination3_0.2.0

}

type	PageInfo	{

		startCursor:	String!

		endCursor:	String!

		hasNextPage:	Boolean!

		hasPreviousPage:	Boolean!

}

type	ReviewsConnection	{

		edges:	[ReviewEdge]

		pageInfo:	PageInfo!

		totalCount:	Int!

}

extend	type	Query	{

		reviews(first:	Int,	after:	String,	last:	Int,	before:	String):	ReviewsConnection!

}

Including	both		first/after		and		last/before		is	optional—according	to	the	spec,	only	one	is	required.	Also,	we	can
add	fields—for	instance,		totalCount		isn’t	in	the	spec—and	add	arguments	to		Query.reviews		(for	instance,	filtering
and	sorting	arguments).	Common	added	arguments	include	a		filterBy		object	type	and		orderBy	,	which	can	be	an
	enum		as	we’ve	been	doing	or	a	list	(for	example		orderBy:	[stars_DESC,	createdAt_ASC]).	Let’s	do	just		first/after	,
	orderBy	,	and	a	single	filter	field—	stars	:

extend	type	Query	{

		reviews(first:	Int,	after:	String,	orderBy:	ReviewOrderBy,	stars:	Int):	ReviewsConnection!

}

For	implementing	the	resolver,	first	we	check	arguments:

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	async	(

						_,

						{	first	=	10,	after,	orderBy	=	'createdAt_DESC',	stars	},

						{	dataSources	}

)	=>	{

						const	errors	=	{}

						if	(first	!==	undefined	&&	first	<	1)	{

								errors.first	=	`must	be	non-negative`

						}

						if	(first	>	MAX_PAGE_SIZE)	{

								errors.first	=	`cannot	be	greater	than	${MAX_PAGE_SIZE}`

						}

						if	(stars	!==	undefined	&&	![0,	1,	2,	3,	4,	5].includes(stars))	{

								errors.stars	=	`must	be	an	integer	between	0	and	5,	inclusive`

						}

						if	(!isEmpty(errors))	{

								throw	new	InputError({	review:	errors	})

						}

						//	…	TODO

						return	{

								edges,

								pageInfo:	{

										startCursor,

										endCursor,

										hasNextPage,

										hasPreviousPage

								},

								totalCount

Chapter	11:	Server	Dev

391

https://github.com/GraphQLGuide/guide-api/compare/pagination2_0.2.0...pagination3_0.2.0

						}

				}

		},

		...

}

Then,	after	some	work	(which	will	include	one	or	more	calls	to		dataSources.reviews.*),	we	return	an	object	matching
the		ReviewsConnection		in	our	schema:

type	ReviewsConnection	{

		edges:	[ReviewEdge]

		pageInfo:	PageInfo!

		totalCount:	Int!

}

Here’s	how	to	construct	that	object:

import	{	encodeCursor	}	from	'../util/pagination'

export	default	{

		Query:	{

				reviews:	async	(

						_,

						{	first	=	10,	after,	orderBy	=	'createdAt_DESC',	stars	},

						{	dataSources	}

)	=>	{

						...

						const	{

								reviews,

								hasNextPage,

								hasPreviousPagePromise

						}	=	await	dataSources.reviews.getPage({	first,	after,	orderBy,	stars	})

						const	edges	=	reviews.map(review	=>	({

								cursor:	encodeCursor(review),

								node:	review

						}))

						return	{

								edges,

								pageInfo:	{

										startCursor:	encodeCursor(reviews[0]),

										endCursor:	encodeCursor(reviews[reviews.length	-	1]),

										hasNextPage,

										hasPreviousPage:	hasPreviousPagePromise

								},

								totalCount:	dataSources.reviews.getCount({	stars	})

						}

				}

		},

	dataSources.reviews.getPage()		returns	an	object	with	three	things.	We	use		reviews		to	create	the	edges	and	cursors.
Each	field	returned	from	a	resolver	can	either	be	a	value	or	a	Promise	that	resolves	to	a	value	(Apollo	Server	will
resolve	the	Promise	for	us	if	that	field	is	selected	in	the	query).	Instead	of	a	boolean	for		hasPreviousPage	,	we	return	a
Promise.	And	for		totalCount	,	we	call	a	new	data	source	method		getCount()	:

	src/data-sources/Reviews.js	

export	default	class	Reviews	extends	MongoDataSource	{

		getCount(filter)	{

				return	this.collection.find(filter).count()

		}

		...

}

Chapter	11:	Server	Dev

392

https://github.com/GraphQLGuide/guide-api/compare/pagination2_0.2.0...pagination3_0.2.0

The	code	for		getPage()		is	a	bit	complex.	We’ll	make	three	database	queries	to	fetch	the	list	of	reviews	and	determine
whether	there	are	next	and	previous	pages:

import	{	decodeCursor	}	from	'../util/pagination'

export	default	class	Reviews	extends	MongoDataSource	{

		getPage({	first,	after,	orderBy,	stars	})	{

				const	isDescending	=	orderBy	===	'createdAt_DESC'

				const	filter	=	{}

				const	prevFilter	=	{}

				if	(after)	{

						const	afterId	=	decodeCursor(after)

						filter._id	=	isDescending	?	{	$lt:	afterId	}	:	{	$gt:	afterId	}

						prevFilter._id	=	isDescending	?	{	$gte:	afterId	}	:	{	$lte:	afterId	}

				}

				if	(stars)	{

						filter.stars	=	stars

				}

				const	sort	=	{	_id:	isDescending	?	-1	:	1	}

				const	reviewsPromise	=	this.collection

						.find(filter)

						.sort(sort)

						.limit(first)

						.toArray()

				const	hasNextPagePromise	=	this.collection

						.find(filter)

						.sort(sort)

						.skip(first)

						.hasNext()

				const	hasPreviousPagePromise	=

						!!after	&&

						this.collection

								.find(prevFilter)

								.sort(sort)

								.hasNext()

				return	{	reviewsPromise,	hasNextPagePromise,	hasPreviousPagePromise	}

		}

		...

}

The	reviews	query	has:

		.limit(first)

		.toArray()

Whereas	to	see	if	there’s	a	next	item,	we	do:

		.skip(first)

		.hasNext()

And	to	check	if	there’s	a	previous	item,	we	use	the	opposite		filter		($gte		and		$lte		are	greater/less	than	or	equal
to)	and		hasNext()	:

		prevFilter._id	=	isDescending	?	{	$gte:	afterId	}	:	{	$lte:	afterId	}

		...

		this.collection

				.find(prevFilter)

				.sort(sort)

				.hasNext()

Chapter	11:	Server	Dev

393

If	the	number	of	database	queries	became	a	performance	problem,	we	could	remove	the	need	for	the	second	by
changing		.limit(first)		in	the	reviews	query	to		.limit(first	+	1)	.	Then,	if	we	receive		first	+	1		results,	we	know
there’s	a	next	page:

				...

				const	reviews	=	await	this.collection

						.find(filter)

						.sort(sort)

						.limit(first	+	1)

						.toArray()

				const	hasNextPage	=	reviews.length	>	first

				if	(hasNextPage)	{

						reviews.pop()

				}

				const	hasPreviousPagePromise	=

						!!after	&&

						this.collection

								.find(prevFilter)

								.sort(sort)

								.hasNext()

				return	{	reviews,	hasNextPage,	hasPreviousPagePromise	}

		}

We	do		reviews.pop()		to	take	the	extra	last	review	(which	the	client	didn’t	request)	off	the	list.

Now	we	have	a	new	issue:	Our	latency	has	gone	up,	since	we’re	making	two	database	queries	in	serial	(await	ing
one	before	starting	the	other)	instead	of	three	queries	in	parallel	(initiating	them	all	at	the	same	time).	To	fix	this,	we
can	create	the		hasPreviousPagePromise		before	the		await	:

				const	hasPreviousPagePromise	=

						!!after	&&

						this.collection

								.find(prevFilter)

								.sort(sort)

								.hasNext()

				const	reviews	=	await	this.collection

						.find(filter)

						.sort(sort)

						.limit(first	+	1)

						.toArray()

				const	hasNextPage	=	reviews.length	>	first

				if	(hasNextPage)	{

						reviews.pop()

				}

				return	{	reviews,	hasNextPage,	hasPreviousPagePromise	}

		}

If,	however,	we	were	more	concerned	with	database	load	than	latency,	and	clients	frequently	made	reviews	queries
without	selecting		Query.reviews.pageInfo.hasPreviousPage	,	then	we	could	make	those	queries	only	trigger	a	single
database	query.	We	can	do	this	by	moving		hasPreviousPage		from	a	property	in	an	object	returned	by	the
	Query.reviews		resolver	(what	we’re	currently	doing)	to	a		PageInfo.hasPreviousPage		resolver:

				…

				const	getHasPreviousPage	=	()	=>

						!!after	&&

						this.collection

Chapter	11:	Server	Dev

394

								.find(prevFilter)

								.sort(sort)

								.hasNext()

				return	{	reviews,	hasNextPage,	getHasPreviousPage	}

		}

And	then	we	update	the	resolvers:

	src/resolvers/Review.js	

export	default	{

		Query:	{

				reviews:	async	(

						_,

						{	first	=	10,	after,	orderBy	=	'createdAt_DESC',	stars	},

						{	dataSources	}

)	=>	{

						...

						const	{

								reviews,

								hasNextPage,

								getHasPreviousPage

						}	=	await	dataSources.reviews.getPage({	first,	after,	orderBy,	stars	})

						const	edges	=	reviews.map(review	=>	({

								cursor:	encodeCursor(review),

								node:	review

						}))

						return	{

								edges,

								pageInfo:	{

										startCursor:	encodeCursor(reviews[0]),

										endCursor:	encodeCursor(reviews[reviews.length	-	1]),

										hasNextPage,

										getHasPreviousPage

								},

								totalCount:	dataSources.reviews.getCount({	stars	})

						}

				}

		},

		PageInfo:	{

				hasPreviousPage:	({	getHasPreviousPage	})	=>	getHasPreviousPage()

		},

		...

}

Apollo	Server	first	calls	the		Query.reviews		resolver,	which	returns	a		ReviewsConnection		that	includes	a		PageInfo	
object	without	a		hasPreviousPage		property.	Instead,	Apollo	Server	will	call	the		PageInfo.hasPreviousPage		resolver.
This	resolver	receives	as	its	first	argument	the		pageInfo		sub-object	that	the	resolver	above	returned,	so	it	can	call	the
	getHasPreviousPage()		function,	which	either	immediately	returns	a	boolean	(when	there’s	no		after		argument)	or
initiates	a	database	query	and	returns	a	Promise.	If	the		hasPreviousPage		field	isn’t	selected	in	the	GraphQL	query,	the
resolver	won’t	be	called,	and	the	database	query	won’t	be	sent.

Let’s	try	out	a	query:

Chapter	11:	Server	Dev

395

https://github.com/GraphQLGuide/guide-api/compare/pagination2_0.2.0...pagination3_0.2.0

We	see	there	are	11	total	reviews	with	5	stars,	starting	with	review	#2,	and	there	are	no	previous	pages
(pageInfo.hasPreviousPage		is	false).	If	we	want	to	request	the	next	3	reviews	after	review	#4,	we	use
	pageInfo.endCursor		as	the	next	query’s		after	:

Chapter	11:	Server	Dev

396

And	we	get	reviews	#5–7	 .

Lastly,	let’s	look	at	the	cursor	creating	and	decoding:

	src/util/pagination.js	

import	{	ObjectId	}	from	'mongodb'

export	const	encodeCursor	=	review	=>

		Buffer.from(review._id.toString()).toString('base64')

export	const	decodeCursor	=	cursor	=>

		ObjectId(Buffer.from(cursor,	'base64').toString('ascii'))

We	take	the	review’s		_id		property	and	base64-encode	it,	and	then	decode	it	back	to	an	ASCII	string,	which	we
convert	to	an	ObjectId.

Using		_id		works	because	we	only	support	ordering	by	createdAt.	If	we	had		orderBy:	updatedAt_DESC	,	then	the
cursor	would	need	to	contain	the	review’s		updatedAt		property.	To	differentiate	between	the	two,	we	could	encode	an
object	instead	of	just	an	ID	string:

export	const	encodeCursor	=	(review,	orderBy)	=>	{

		const	cursorData	=	['updatedAt_DESC',	'updatedAt_ASC'].includes(orderBy)

				?	{	updatedAt:	review.updatedAt	}

				:	{	_id:	review._id	}

		return	Buffer.from(JSON.stringify(cursorData)).toString('base64')

}

export	const	decodeCursor	=	cursor	=>

		JSON.parse(Buffer.from(cursor,	'base64').toString('ascii'))

Also,	for	either	of	our	encoding	systems	to	work,	the	client	has	to	continue	sending	the		orderBy		and		stars	
arguments	(so	that	the	server	knows	what	MongoDB	query	filter	and	sort	to	use).	If	we	wanted	the	client	to	be	able	to
just	send		first		and		after	,	then	we	would	need	to	encode	the	ordering	and	filtering	arguments	in	cursors.	Then	the
server	could	decode	the	information	later	when	receiving	a	cursor	as	an		after		argument:

Chapter	11:	Server	Dev

397

https://github.com/GraphQLGuide/guide-api/compare/pagination2_0.2.0...pagination3_0.2.0
https://en.wikipedia.org/wiki/ASCII

export	const	encodeCursor	=	(review,	orderBy,	stars)	=>	{

		const	cursorData	=	{

				_id:	review._id,

				updatedAt:	review.updatedAt,

				orderBy,

				stars

		}

		return	Buffer.from(JSON.stringify(cursorData)).toString('base64')

}

File	uploads
Originally,	web	servers	saved	files	to	their	hard	drives	or	to	colocated	file	servers.	Most	modern	web	servers	use	a
third-party	file-storage	service	like	Amazon	S3	or	Cloudinary.	When	a	user	wants	to	upload	a	file,	there	are	a	few
different	ways	the	client	can	get	it	to	a	storage	service:

Client-side:	The	client	sends	the	file	directly	to	the	storage	service.
Signed:	Our	API	server	gives	a	signature	to	the	client	to	give	to	the	storage	service	along	with	the	file.	If	our
API	server	doesn’t	give	the	client	a	signature	(for	any	reason—for	example	the	client	isn’t	logged	in,	or	the
logged-in	user	doesn’t	have	upload	permissions),	then	the	storage	service	won’t	accept	the	file.
Unsigned:	Our	server	is	not	involved,	and	the	storage	service	accepts	any	file	from	any	client.

Server-side:	The	client	sends	the	file	to	our	server,	and	we	forward	it	to	the	storage	service.
Through	GraphQL:	The	file	goes	through	our	GraphQL	endpoint.
Outside	GraphQL:	We	create	a	separate	endpoint	or	server	for	the	file	to	go	through.

We	recommend	unsigned	client-side	file	uploads	unless	the	lack	of	signatures	becomes	a	problem.	If	it	does,	we
suggest	switching	to	signed	client-side.	We	prefer	unsigned	file	uploads	because	they’re	the	easiest	to	set	up.	And	the
client-side	upload	process	is	faster	than	server-side	and	reduces	load	on	the	GraphQL	server.

Not	all	storage	services	support	client-side	uploads,	and	among	those	that	do,	only	some	support	unsigned	uploads.
S3,	for	instance,	doesn’t	really	support	it	(we	can	configure	an	S3	bucket	for	public	write	access,	but	then	anyone	can
delete	user	uploads).	Cloudinary	not	only	supports	unsigned	uploads,	but	they	also	take	security	measures	to	prevent
abuse.

In	the	first	section	we’ll	go	over	client-side	uploads,	and	in	the	second	we’ll	do	server-side	through	GraphQL.

Client-side

If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...files)

In	this	section	we’ll	add	the	server	code	to	support	an	unsigned	client-side	upload—and	at	the	end,	we’ll	show	the
additional	code	needed	for	a	signed	upload.	All	we	need	is	a	mutation	for	the	client	to	tell	the	server	the	filename,	ID,
or	path,	depending	on	which	file-storage	service	we’re	using.	If	we	wanted	to	make	it	general-purpose,	we	could	use
the	file’s	full	URL	instead.	For	the	Guide,	we’ll	use	Cloudinary,	which	gives	the	client	the	file’s	path	after	the	upload	is
complete	(the	client-side	upload	process	is	described	in	Chapter	6).	The	server	then	combines	the	path—for	example
	v1551850855/jeresig.jpg	—with	our	account	URL	(https://res.cloudinary.com/graphql/)	to	form	the	full	URL:

https://res.cloudinary.com/graphql/v1551850855/jeresig.jpg

We’ll	use	the	file-upload	feature	to	allow	users	to	add	a	profile	photo	(instead	of	using	their	current	GitHub	photo),	so
we’ll	call	the	mutation		setMyPhoto		and	add	it	to		User.graphql	:

	src/schema/User.graphql	

extend	type	Mutation	{

		...

		setMyPhoto(path:	String!):	User!

Chapter	11:	Server	Dev

398

https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...files_0.1.0
https://res.cloudinary.com/graphql/v1551850855/jeresig.jpg
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...files_0.2.0

}

Since		setMyPhoto		will	be	changing	a		User		field,	we	return	the	modified		User		object.

In	the	resolver,	we	check	if	the	client	is	logged	in	and	call	a	new	data	source	method		setPhoto()	:

	src/resolvers/User.js	

export	default	{

		...

		Mutation:	{

				createUser:	...,

				setMyPhoto(_,	{	path	},	{	user,	dataSources	})	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

						return	dataSources.users.setPhoto(path)

				}

		}

}

The	method	constructs	the	full	photo	URL,	saves	it	to	the	database,	and	returns	the	updated	user	object:

	src/data-sources/Users.js	

export	default	class	Users	extends	MongoDataSource	{

		...

		async	setPhoto(path)	{

				const	{	user	}	=	this.context

				const	photo	=	`https://res.cloudinary.com/graphql/${path}`

				await	this.collection.updateOne({	_id:	user._id	},	{	$set:	{	photo	}	})

				return	{

						...user,

						photo

				}

		}

}

Now	that	some	user	documents	will	contain	a		photo		field,	we	need	to	update	our	resolver:

	src/resolvers/User.js	

export	default	{

		...

		User:	{

				id:	...,

				email:	...,

				photo(user)	{

						if	(user.photo)	{

								return	user.photo

						}

						//	user.authId:	'github|1615'

						const	githubId	=	user.authId.split('|')[1]

						return	`https://avatars.githubusercontent.com/u/${githubId}`

				},

				createdAt:	...

		},

		Mutation:	{

				createUser:	...,

				setMyPhoto:	...

		}

}

We	return	early	if	the		user		object	fetched	from	the	database	has	a		photo		property.

Chapter	11:	Server	Dev

399

https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...files_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...files_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...files_0.2.0

We	can	test	out	the	mutation	in	Playground	with	either	a	valid	Authorization	header	or	by	hard	coding	the		authId		in
	src/context.js	:

If	we	wanted	to	do	signed	client-side	upload,	we’d	need	to	make	a	Query	for	the	client	to	fetch	the	signature.	Our
resolver	would	call	cloudinary.utils.api_sign_request()	like	this:

export	default	{

		Query:	{

				...

				uploadSignature(_,	{	uploadParams	},	{	user	})	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

						return	cloudinary.utils.api_sign_request(uploadParams,	CLOUDINARY_API_SECRET)

				}

		}

}

Then	the	client	would	send	the	signature	along	with	the	file	to	Cloudinary’s	servers	(and	we	would	disable	unsigned
uploads	in	our	Cloudinary	account	settings).

If	we	were	using	Amazon	S3,	then	we’d	use	the		s3.createPresignedPost()		function	to	create	the	signature.

Server-side

If	you’re	jumping	in	here,		git	checkout	files_0.1.0		(tag	files_0.1.0,	or	compare	files...files2)

We	go	over	the	differences	between	client-side	and	server-side	above.	In	this	section,	we’ll	do	server-side	file
uploads,	where	the	client	sends	the	file	to	the	GraphQL	server,	which	sends	it	to	the	storage	service	(we	could	send	to
Cloudinary	again,	but	we’ll	use	Amazon	S3	this	time	for	diversity).	There	are	different	methods	for	the	client	to	send
the	file,	and	the	most	common	is	a	multipart	HTTP	request,	which	works	through:

an		Upload		scalar	provided	by	Apollo	Server
the	Apollo	Link		apollo-upload-client		on	the	client	side

We	create	a	mutation	with	an	argument	of	type		Upload	:

	src/schema/User.graphql	

extend	type	Mutation	{

		createUser(user:	CreateUserInput!,	secretKey:	String!):	User

		setMyPhoto(path:	String!):	User!

		uploadMyPhoto(file:	Upload!):	User!

}

We’ll	need	an	instance	of	the	AWS	S3	client	library	(aws-sdk)	to	upload	to	S3:

	src/util/s3.js	

import	AWS	from	'aws-sdk'

export	default	new	AWS.S3()

Chapter	11:	Server	Dev

400

https://cloudinary.com/documentation/upload_images#using_cloudinary_server_side_sdks_to_generate_authentication_signatures
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#createPresignedPost-property
https://github.com/GraphQLGuide/guide-api/tree/files_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/files_0.1.0...files2_0.1.0
https://www.apollographql.com/docs/apollo-server/data/file-uploads/
https://github.com/jaydenseric/apollo-upload-client
https://github.com/GraphQLGuide/guide-api/compare/files_0.2.0...files2_0.2.0
https://aws.amazon.com/sdk-for-node-js/
https://github.com/GraphQLGuide/guide-api/blob/files2_0.2.0/src/util/s3.js

We’ll	import	and	use	it	in	the	resolver:

	src/resolvers/User.js	

import	s3	from	'../util/s3'

const	IMAGE_MIME_TYPES	=	['image/jpeg',	'image/png',	'image/gif',	'image/webp']

export	default	{

		...

		Mutation:	{

				...

				uploadMyPhoto:	async	(_,	{	file	},	{	user,	dataSources	})	=>	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

						const	{	createReadStream,	filename,	mimetype	}	=	await	file

						if	(!IMAGE_MIME_TYPES.includes(mimetype))	{

								throw	new	InputError({	file:	'must	be	an	image	file'	})

						}

						const	stream	=	createReadStream()

						const	{	Location:	fileUrl	}	=	await	s3

								.upload({

										Bucket:	'guide-user-photos',

										Key:	filename,

										Body:	stream

								})

								.promise()

						return	dataSources.users.setPhoto(fileUrl)

				}

		}

}

We	first	check	if	the	user	is	logged	in,	then	we	check	the	file	type	(valid	values	taken	from	a	list	of	MIME	types),	and
then	we	create	a	Node.js	file	stream,	which	we	pass	to		s3.upload()		along	with	the	filename	and	S3	bucket	(the	top-
level	folder	in	S3,	and	the	subdomain	of	the	file’s	URL).	Finally,	we	call	the	data	source		setPhoto()		method,	which
used	to	take	a	path,	but	let’s	refactor	it	to	take	a	full	URL:

	src/data-sources/Users.js	

export	default	class	Users	extends	MongoDataSource	{

		...

		async	setPhoto(photo)	{

				const	{	user	}	=	this.context

				await	this.collection.updateOne({	_id:	user._id	},	{	$set:	{	photo	}	})

				return	{

						...user,

						photo

				}

		}

}

Changing	the	parameter	means	we	need	to	update	where	we	used	it	previously:

	src/resolvers/User.js	

export	default	{

		...

		Mutation:	{

				createUser...

				setMyPhoto(_,	{	path	},	{	user,	dataSources	})	{

						if	(!user)	{

								throw	new	ForbiddenError('must	be	logged	in')

						}

Chapter	11:	Server	Dev

401

https://github.com/GraphQLGuide/guide-api/compare/files_0.2.0...files2_0.2.0
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Common_types
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://github.com/GraphQLGuide/guide-api/compare/files_0.2.0...files2_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/files_0.2.0...files2_0.2.0

						return	dataSources.users.setPhoto(

								`https://res.cloudinary.com/graphql/${path}`

)

				},

				uploadMyPhoto...

		}

}

We	pass	the	full	cloudinary	URL	instead	of	just	the	path.

In	order	for	the	AWS	SDK	to	authenticate	our	account,	we	need	to	add		AWS_ACCESS_KEY_ID		and
	AWS_SECRET_ACCESS_KEY		to	our		.env	.

To	test	this	section	yourself,	you	need	an	AWS	account,	a	bucket	created	in	the	S3	management	console,	and
access	keys	created	in	the	Identity	and	Access	Management	console.	You’d	replace		'guide-user-photos'		in
	src/resolvers/User.js		with	your	bucket	name,	and	you’d	put	your	own	access	keys	in		.env	.	Then	you’d	write
a	test	like	this	or	create	a	small	web	app	that	used		apollo-upload-client		to	send	a	file	in	an		uploadMyPhoto	
Mutation.

When	the		uploadMyPhoto		Mutation	is	run,	the	upload	is	successful,	and	the	server	saves	a	URL	like	this	in	the		photo	
field	of	the	current	user’s	MongoDB	document:

	https://guide-user-photos.s3.amazonaws.com/filename.jpg	

Schema	validation
In	this	section	we’ll	go	over	schema	validation	and	how	to	set	it	up	using	Apollo	Graph	Manager.

There	are	three	places	where	our	server	is	currently	doing	things	that	we	might	call	schema	validation:

	gql		parses	our	SDL	strings	and	throws	errors	when	they’re	invalid.
On	startup,		ApolloServer		checks	the		typeDefs		it	receives	to	see	if	our	whole	schema	is	valid,	according	to	the
GraphQL	spec.
While	running,		ApolloServer		validates	queries	against	the	schema.

However,	usually	the	term	schema	validation	refers	to	schema-change	validation:	i.e.,	ascertaining	whether	a	change
to	a	schema	is	valid.	When	we	deploy	a	schema	and	clients	use	it,	and	we	then	change	the	schema	and	want	to	re-
deploy,	we	can	first	use	schema	validation	to	check	if	the	change	is	valid.	“Valid”	in	this	context	can	have	different
meanings.	We	could	say	it’s	invalid	if	any	of	the	changes	are	backward	incompatible.	However,	sometimes	we	want	to
make	backward-incompatible	changes.	So,	often	“valid”	means	the	changes	will	work	with	X%	of	queries	in	the	last	N
days.	The	default	for	Apollo	Graph	Manager	is	100%	of	queries	in	the	last	seven	days.	This	way,	backward-
incompatible	changes	can	be	made	as	long	as	no	clients	have	selected	the	changed	field	within	the	past	week.

	graphql-inspector		is	a	command-line	tool	for	finding	breaking	or	dangerous	changes,	and	GraphQL	Doctor	is	a
GitHub	app	that	does	the	same	for	pull	requests,	comparing	the	PR’s	schema	against	the	schema	in		master	.
However,	we	recommend	using	Graph	Manager	if	you	can	(the	validation	feature	requires	a	paid	plan).	Its	method	of
validating	against	the	query	patterns	of	our	clients	is	more	broadly	useful,	and	it’s	easy	to	use	from	the	command	line,
in	continuous	integration,	and	in	GitHub	PRs.

The	first	step	to	setting	up	Graph	Manager	is	setting	the	env	var		ENGINE_API_KEY		to	the	value	we	get	from	our	Graph
Manager	account.	We	already	added	it	to	our		.env		in	the	Analytics	section.	Having		ENGINE_API_KEY		configures	the
	apollo		command-line	tool,	which	we	use	for	schema	registration	and	validation,	and	it	enables	metrics	reporting
(which	we	need	for	validation,	because	validation	is	based	on	clients’	queries,	which	are	collected	metrics).

The	second	step	we	also	did	in	the	Analytics	section:	Registering	our	schema	with	Graph	Manager.	Let’s	assume	we
have	our	app	running	in	production	at		api.graphql.guide	.	We	would	register	the	production	schema	with:

Chapter	11:	Server	Dev

402

https://s3.console.aws.amazon.com/s3/home
https://console.aws.amazon.com/iam/home
https://github.com/jaydenseric/graphql-upload/blob/b70a67dd4d0aee4eeccbd261ae6105a2bace418e/test/lib/graphqlUploadExpress.test.js#L37-L64
https://github.com/jaydenseric/apollo-upload-client
https://www.apollographql.com/docs/graph-manager/
https://www.apollographql.com/docs/apollo-server/schema/schema/#the-schema-definition-language
https://graphql-inspector.com/docs/essentials/diff
https://github.com/cap-collectif/graphql-doctor
https://engine.apollographql.com/

$	npx	apollo	service:push	--endpoint="https://api.graphql.guide/graphql"	--tag=prod

We	use		--tag		to	denote	the	variant.	Graph	Manager	tracks	variants	of	schemas,	each	with	their	own	metrics	and
schema	history.	So	the	above	command	says	to	Apollo:	“Introspect	the	schema	at		api.graphql.guide		and	save	it	as
the	latest	version	of	our	'prod'	schema	variant.”

Registration	has	other	uses	beyond	validation—it	also	powers	the	Apollo	VS	Code	extension	and	Graph
Manager’s	schema	history	and	analytics.

Then,	when	we	make	changes	to	our	schema,	before	we	push	to	production,	we	check	to	see	whether	the	change	is
valid	by	running		npm	run	dev		in	one	terminal	and	the	following	in	another:

$	npx	apollo	service:check	--endpoint="http://localhost:4000/graphql"	--tag=prod

This	says,	“Introspect	the	schema	of	the	server	running	on	port	4000	of	my	machine	and	validate	it	against	the	latest
production	schema.”	It	will	output	either	success	or	a	list	of	which	changes	fail	validation,	like	this:

$	npx	apollo	service:check	...

		✔	Loading	Apollo	Project
		✔	Validated	local	schema	against	tag	prod	on	service	engine
		✔	Compared	8	schema	changes	against	110	operations	over	the	last	7	days
		✖	Found	2	breaking	changes	and	3	compatible	changes
				→	breaking	changes	found

FAIL				ARG_REMOVED																`Query.searchUsers`	arg	`term`	was	removed

FAIL				FIELD_REMOVED														`Review.stars`	was	removed

PASS				FIELD_ADDED																`Review.starCount`	was	added

PASS				ARG_ADDED																		`Query.searchUsers`	arg	`partialName`	was	added

PASS				TYPE_REMOVED															`ReviewComment`	removed

PASS				FIELD_DEPRECATION_REMOVED		`Review.text`	is	no	longer	deprecated

View	full	details	at:	https://engine.apollographql.com/service/example-123/check/foo

Given	the	validation	failure,	we	would	know	to	not	push	to	production.

We	can	save	ourselves	time	and	the	risk	of	forgetting	to	run	the	validation	command	by	automating	it—for	instance,
with	the	Apollo	Engine	GitHub	App	or	with	a	continuous	integration	service	like	CircleCI:

	.circleci/config.yml	

version:	2

jobs:

		validate_against_production:

				docker:

						-	image:	circleci/node:8

				steps:

						-	checkout

						-	run:	npm	install

						-	run:

										name:	Starting	server

										command:	npm	start

										background:	true

						#	Wait	for	server	to	start	up

						-	run:	sleep	5

						-	run:	npx	apollo	service:check	--endpoint="http://localhost/graphql"	--serviceName=users	--tag=prod

Validating	Apollo	federation	services	is	similar,	and	we’ll	see	how	in	the	Managed	federation	section	below.

Chapter	11:	Server	Dev

403

https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo
https://github.com/apps/apollo-engine

Apollo	federation
Federated	service
Federated	gateway
Extending	entities
Managed	federation
Deploying	federation

In	the	Introduction	to	this	chapter,	we	talk	about	microservices	versus	monoliths.	If	we	go	down	the	microservice
route,	then	the	best	way	to	do	it	is	with	Apollo	federation.

Apollo	federation	is	a	specification	for	how	to	divide	our	schema	across	different	services.	Each	service	describes
which	parts	of	the	schema	it	implements,	and	a	gateway	combines	all	the	parts	into	one	larger	schema.	The	gateway
stands	between	the	client	and	the	services,	receiving	requests	from	the	client	and	automatically	resolving	them
through	one	or	more	requests	to	services.

The	Apollo	federation	specification	can	be	implemented	in	any	language	and	has	been	added	to	many	existing
GraphQL	server	libraries.	Those	servers	that	follow	the	specification	are	the	services,	and	the	gateway	is	a	special
instance	of	Apollo	Server	that	uses	the		@apollo/gateway		library.

In	the	first	three	sections,	we’ll	rebuild	our	Guide	server	monolith	using	federation:	We’ll	start	with	a	users	service,
then	the	gateway,	and	then	the	reviews	service.	Then	in	Managed	federation,	we’ll	see	how	we	can	benefit	from
Apollo’s	Graph	Manager	SaaS	product,	and	finally	in	Deploying	federation,	we’ll	discuss	the	deployment	of	the
gateway	and	services.

Federated	service

If	you’re	jumping	in	here,		git	checkout	federation_0.1.0		(tag	federation_0.1.0,	or	compare
federation...federation2)

In	this	section	we’ll	build	a	users	service:	A	GraphQL	server	that	supports	Apollo	federation	and	handles	queries
related	to	the		User		type.	We’ll	start	from	a	new	tag:

$	git	checkout	federation_0.1.0

Here	is	our	starting	file	structure:

$	tree	-L	3

.

├──	babel.config.json

├──	lerna.json

├──	lib

│			├──	Date.js

│			├──	auth.js

│			├──	db.js

│			└──	errors.js

├──	package.json

└──	services

				├──	reviews

				│			└──	package.json

				└──	users

								└──	package.json

The	two	services	will	go	in	the		services/		folder,	and		lib/		contains	code	to	share	between	the	services	(taken	from
the	monolith	we	built	earlier).	Let’s	install	all	the	modules	we	need:

$	npm	install

Chapter	11:	Server	Dev

404

https://www.apollographql.com/docs/apollo-server/federation/other-servers/
https://www.apollographql.com/docs/apollo-server/api/apollo-gateway/
https://github.com/GraphQLGuide/guide-api/tree/federation_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/federation_0.1.0...federation2_0.1.0

This	creates	a		node_modules/		at	the	root—which	has	modules	for	the	gateway	code	that	we’ll	place	at	the	root—and	it
also	creates		node_modules/		folders	inside		services/reviews/		and		services/users/		thanks	to	the	Lerna	library,	which
we	configure	in		lerna.json		and	use	in	a		postinstall		script	in		package.json	:

{

		"name":	"guide-api",

		"version":	"0.1.0",

		"scripts":	{

				"start":	"babel-watch	gateway.js",

				"start-service-users":	"babel-watch	services/users/index.js",

				"start-service-reviews":	"babel-watch	services/reviews/index.js",

				"start-services":	"concurrently	\"npm:start-service-*\"",

				"postinstall":	"lerna	bootstrap"

		},

		...

}

We	also	see	from	the	scripts	where	we’ll	locate	the	main	server	files:

gateway.js

services/users/index.js

services/reviews/index.js

	concurrently		runs	multiple	other	scripts	in	the	same	terminal—in	this	case,	both		start-service-users		and		start-
service-reviews	.

In	this	section,	we’ll	be	filling	in		services/users/*	.	There	are	three	main	parts	to	a	federated	service:

	buildFederatedSchema()	:	Instead	of	passing		typeDefs		and		resolvers		directly	to		ApolloServer()	,	we	give	them
to	the		buildFederatedSchema()		from	the		@apollo/federation		library.
Entities:	Types	defined	in	one	service	that	can	be	referenced	or	extended	by	other	services.

	@key		directive:	Each	entity	requires	a		@key		directive	denoting	the	primary	key.
	__resolveReference()	:	For	each	entity,	we	must	write	a	reference	resolver,	which	fetches	an	entity	object	by
its		@key		field(s).

As	usual,	let’s	start	with	the	schema:

	services/users/schema.js	

import	{	gql	}	from	'apollo-server'

export	default	gql`

		scalar	Date

		extend	type	Query	{

				me:	User

				user(id:	ID!):	User

		}

		type	User	@key(fields:	"id")	{

				id:	ID!

				firstName:	String!

				lastName:	String!

				username:	String!

				email:	String

				photo:	String!

				createdAt:	Date!

				updatedAt:	Date!

		}

`

Chapter	11:	Server	Dev

405

https://lerna.js.org/
https://github.com/GraphQLGuide/guide-api/blob/federation_0.2.0/package.json
https://github.com/GraphQLGuide/guide-api/blob/federation2_0.2.0/services/users/schema.js

We	include	shared	types	like	custom	scalars	in	the	schema	of	each	service.	Also,	the		Query		and		Mutation		types	will
be	initially	defined	in	the	gateway,	so	the	services		extend		them.	Finally,	our		User		type	has	this	directive:
	@key(fields:	"id")	,	which	tells	the	gateway	that	the		User		type	is	a	federation	entity	and	the		id		field	is	its	primary
key.

We	copy	the	below	from	our	monolith’s		src/resolvers/User.js		with	a	couple	of	additions:

Adding	the		Date		resolvers,	imported	from		lib/Date.js	
Adding		User.__resolveReference	

	services/users/resolvers.js	

import	{	ForbiddenError	}	from	'apollo-server'

import	{	ObjectId	}	from	'mongodb'

import	{	InputError	}	from	'../../lib/errors'

import	Date	from	'../../lib/Date'

const	OBJECT_ID_ERROR	=

		'Argument	passed	in	must	be	a	single	String	of	12	bytes	or	a	string	of	24	hex	characters'

export	default	{

		...Date,

		Query:	{

				me:	(_,	__,	context)	=>	context.user,

				user:	(_,	{	id	},	{	dataSources	})	=>	{

						try	{

								return	dataSources.users.findOneById(ObjectId(id))

						}	catch	(error)	{

								if	(error.message	===	OBJECT_ID_ERROR)	{

										throw	new	InputError({	id:	'not	a	valid	Mongo	ObjectId'	})

								}	else	{

										throw	error

								}

						}

				}

		},

		User:	{

				__resolveReference:	(reference,	{	dataSources	})	=>

						dataSources.users.findOneById(ObjectId(reference.id)),

				id:	({	_id	})	=>	_id,

				email(user,	_,	{	user:	currentUser	})	{

						if	(!currentUser	||	!user._id.equals(currentUser._id))	{

								throw	new	ForbiddenError(`cannot	access	others'	emails`)

						}

						return	user.email

				},

				photo(user)	{

						//	user.authId:	'github|1615'

						const	githubId	=	user.authId.split('|')[1]

						return	`https://avatars.githubusercontent.com/u/${githubId}`

				},

				createdAt:	user	=>	user._id.getTimestamp()

		}

}

The	first	argument	to		__resolveReference		is	the	reference:	An	object	containing	the	primary	key	field(s)—in	this	case,
just	the		id	—which	we	resolve	to	the	user	object.

Now	we	put	the	resolvers	and	schema	together	to	create	the	server:

	services/users/index.js	

import	{	ApolloServer	}	from	'apollo-server'

import	{	buildFederatedSchema	}	from	'@apollo/federation'

import	{	MongoDataSource	}	from	'apollo-datasource-mongodb'

import	resolvers	from	'./resolvers'

Chapter	11:	Server	Dev

406

https://github.com/GraphQLGuide/guide-api/blob/federation2_0.2.0/services/users/resolvers.js
https://github.com/GraphQLGuide/guide-api/blob/federation2_0.2.0/services/users/index.js

import	typeDefs	from	'./schema'

import	{	mongoClient	}	from	'../../lib/db'

import	context	from	'../../lib/userContext'

const	server	=	new	ApolloServer({

		schema:	buildFederatedSchema([

				{

						typeDefs,

						resolvers

				}

]),

		dataSources:	()	=>	({

				users:	new	MongoDataSource(mongoClient.db().collection('users'))

		}),

		context

})

mongoClient.connect()

server.listen({	port:	4001	}).then(({	url	})	=>	{

		console.log(`Users	service	ready	at	${url}`)

})

Here	we	see	the	use	of		buildFederatedSchema()	.	Also,	the	only	data	source	method	we	use	is		.findOneById()	,	so	we
can	use		MongoDataSource		directly	instead	of	defining	a	subclass.		mongoClient		we	get	from		db.js	:

	lib/db.js	

import	{	MongoClient	}	from	'mongodb'

const	URL	=	'mongodb://localhost:27017/guide'

export	const	mongoClient	=	new	MongoClient(URL)

Finally,	our		context		function	needs	to	provide	a		user		object	for	the		Query.me		resolver.	Our	monolith	context
function	looked	at	the		authorization		header,	decoded	the		authId	,	and	fetched	the	user	object.	Instead	of	having
each	of	our	services	repeat	this	process,	we	can	have	our	gateway	do	part	or	all	of	it.	We	can	either	do:

1.	 Gateway	decodes		authId		and	passes	it	to	services	as	an		auth-id		header.	Services	read	the	header	and	fetch
the	user	document.

2.	 Gateway	decodes		authId	,	connects	to	the	user	database	to	fetch	the	user	document,	and	passes	it	to	services
as	a		user		header.

3.	 The	JWT	that’s	sent	in	the	authorization	header	from	the	client	can	be	created	to	contain	the	whole	user
document,	so	that	when	it’s	decoded,	no	database	query	is	required.

Our	JWTs	don’t	have	the	whole	user	document,	so	we	can’t	do	#3.	Between	#1	and	#2,	#2	is	more	efficient,	as	it
reduces	the	number	of	database	calls.	Note	that	#2	isn’t	possible	when	the	user	document	is	large.	The	maximum
header	size	is	set	by	the	receiving	server,	for	instance	Nginx	has	a	maximum	4KB,	which	is	~4,000	ASCII	characters.
(We	can	check	the	length	of	a	user	document	by	doing		JSON.stringify(user).length	.)	Here	is	the	service	side	of	#2:

	lib/userContext.js	

module.exports	=	async	({	req	})	=>	{

		const	context	=	{}

		const	userDocString	=	req	&&	req.headers['user']

		if	(userDocString)	{

				context.user	=	JSON.parse(userDocString)

		}

		return	context

}

Now	we	can	set	the		user		HTTP	header	and	both		Query.user		and		Query.me		work:

Chapter	11:	Server	Dev

407

https://github.com/GraphQLGuide/guide-api/blob/federation_0.2.0/lib/db.js
https://github.com/GraphQLGuide/guide-api/blob/federation2_0.2.0/lib/userContext.js

$	npm	run	start-service-users

>	guide-api@0.1.0	start-service-users	/guide-api

>	babel-watch	services/users/index.js

Users	service	ready	at	http://localhost:4001/

Federated	gateway

If	you’re	jumping	in	here,		git	checkout	federation2_0.1.0		(tag	federation2_0.1.0,	or	compare
federation2...federation3)

In	the	last	section	we	implemented	the	users	service.	In	this	section,	we’ll	implement	the	gateway.	The	basic	process
is	creating	an		ApolloGateway()		that	points	to	a	list	of	the	services,	and	then	giving	that	to		ApolloServer()	:

	gateway.js	

import	{	ApolloServer	}	from	'apollo-server'

import	{	ApolloGateway	}	from	'@apollo/gateway'

const	gateway	=	new	ApolloGateway({

		serviceList:	[

				{	name:	'users',	url:	'http://localhost:4001/graphql'	},

]

})

const	server	=	new	ApolloServer({

		gateway,

		subscriptions:	false

})

server.listen().then(({	url	})	=>	{

		console.log(`Gateway	ready	at	${url}`)

})

We	disable	subscriptions	because	they	don’t	yet	work	with		ApolloGateway	.	This	works,	but	it’s	not	yet	sending	the
	user		HTTP	header	our		users		service	expects.	This	takes	two	steps:	copying	our	monolith’s	context	function	to	give
to		ApolloServer()		and	defining	a		buildService()		function	to	add	the	header	in	requests	to	services:

import	{	ApolloServer	}	from	'apollo-server'

import	{	ApolloGateway,	RemoteGraphQLDataSource	}	from	'@apollo/gateway'

import	context	from	'./context'

Chapter	11:	Server	Dev

408

https://github.com/GraphQLGuide/guide-api/tree/federation2_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/federation2_0.1.0...federation3_0.1.0
https://github.com/GraphQLGuide/guide-api/blob/federation3_0.2.0/gateway.js

import	{	mongoClient	}	from	'./lib/db'

class	AuthenticatedDataSource	extends	RemoteGraphQLDataSource	{

		willSendRequest({	request,	context	})	{

				request.http.headers.set('user',	JSON.stringify(context	&&	context.user))

		}

}

const	gateway	=	new	ApolloGateway({

		serviceList:	[

				{	name:	'users',	url:	'http://localhost:4001/graphql'	},

				{	name:	'reviews',	url:	'http://localhost:4002/graphql'	}

],

		buildService({	url	})	{

				return	new	AuthenticatedDataSource({	url	})

		}

})

const	server	=	new	ApolloServer({

		gateway,

		context,

		subscriptions:	false

})

mongoClient.connect()

server.listen().then(({	url	})	=>	{

		console.log(`Gateway	ready	at	${url}`)

})

	buildService()		returns	an		AuthenticatedDataSource		which	sets	the	stringified	user	doc	from	the	context	as	a	header.
	willSendRequest()		is	then	called	for	each	request	from	the	gateway	to	the	services.	We	also	import		mongoClient		in
order	to	initiate	the	connection	and	import	context	from:

	context.js	

import	{	AuthenticationError	}	from	'apollo-server'

import	{	getAuthIdFromJWT	}	from	'./lib/auth'

import	{	mongoClient	}	from	'./lib/db'

export	default	async	({	req	})	=>	{

		const	context	=	{}

		const	jwt	=	req	&&	req.headers.authorization

		let	authId

		if	(jwt)	{

				try	{

						authId	=	await	getAuthIdFromJWT(jwt)

				}	catch	(e)	{

						let	message

						if	(e.message.includes('jwt	expired'))	{

								message	=	'jwt	expired'

						}	else	{

								message	=	'malformed	jwt	in	authorization	header'

						}

						throw	new	AuthenticationError(message)

				}

				const	user	=	await	mongoClient

						.db()

						.collection('users')

						.findOne({	authId	})

				if	(user)	{

						context.user	=	user

				}	else	{

						throw	new	AuthenticationError('no	such	user')

				}

		}

		return	context

Chapter	11:	Server	Dev

409

https://github.com/GraphQLGuide/guide-api/blob/federation3_0.2.0/context.js

}

The	only	difference	between	this	and	the	monolith’s	version	is	importing		mongoClient		instead	of	the		db		directly.

We	can	now	run	our		users		service	and	gateway	in	two	different	terminals:

$	npm	run	start-service-users

>	guide-api@0.1.0	start-service-users	/guide-api

>	babel-watch	services/users/index.js

Users	service	ready	at	http://localhost:4001/

$	npm	start

>	guide-api@0.1.0	start	/guide-api

>	babel-watch	gateway.js

Gateway	ready	at	http://localhost:4000/

[INFO]	Wed	Mar	1	2020	04:55:43	GMT-0400	(EST)	apollo-gateway:	Gateway	successfully	loaded	schema.

								*	Mode:	unmanaged

When	we	open	the	gateway	URL,	set	our	authorization	header,	and	query,	it	works!	

Extending	entities

If	you’re	jumping	in	here,		git	checkout	federation3_0.1.0		(tag	federation3_0.1.0,	or	compare
federation3...federation4)

In	this	section,	we’ll	build	another	service—this	one	for	reviews—and	we’ll	see	how	to	extend	entities	created	by	other
services.	Then,	we’ll	add	the	reviews	service	to	the	gateway	and	see	how	the	gateway	resolves	queries	involving	both
services.

Let’s	start	with	the	schema.	First,	we	take	the		Review		type	and		reviews		query	from	our	monolith	for	our	new
schema,	and	then	we	add	a	few	things:

	services/reviews/schema.js	

import	{	gql	}	from	'apollo-server'

Chapter	11:	Server	Dev

410

https://github.com/GraphQLGuide/guide-api/tree/federation3_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/federation2_0.1.0...federation4_0.1.0
https://github.com/GraphQLGuide/guide-api/blob/federation4_0.2.0/services/reviews/schema.js

export	default	gql`

		scalar	Date

		type	Review	@key(fields:	"id")	{

				id:	ID!

				text:	String!

				stars:	Int

				author:	User!

				createdAt:	Date!

				updatedAt:	Date!

		}

		extend	type	Query	{

				reviews:	[Review!]!

		}

		extend	type	User	@key(fields:	"id")	{

				id:	ID!	@external

				reviews:	[Review!]!

		}

`

	scalar	Date	,	as	we	did	in	the		users		service
	@key		directive	for		type	Review	,	to	declare	it	as	a	federation	entity
	extend	type	User	:	Here	we’re	extending	the		User		type	originally	defined	externally.	We	have	to	include	both	the
	@key		directive	as	well	as	the	primary	key	fields—in	this	case	just		User.id	—with	the		@external		directive
(signifying	that	this	field	was	originally	defined	in	another	service).	The		reviews		field	doesn’t	have		@external	,
which	means	it’s	being	added	to	the		User		type,	and	we’ll	need	to	write	a	resolver	for	it:

	services/reviews/resolvers.js	

import	{	ObjectId	}	from	'mongodb'

import	Date	from	'../../lib/Date'

export	default	{

		...Date,

		Query:	{

				reviews:	(_,	__,	{	dataSources	})	=>	dataSources.reviews.all()

		},

		Review:	{

				__resolveReference:	(reference,	{	dataSources	})	=>

						dataSources.reviews.findOneById(ObjectId(reference.id)),

				id:	review	=>	review._id,

				author:	review	=>	({	id:	review.authorId	}),

				createdAt:	review	=>	review._id.getTimestamp()

		},

		User:	{

				reviews:	(user,	_,	{	dataSources	})	=>

						dataSources.reviews.all({	authorId:	ObjectId(user.id)	})

		}

}

These	resolvers	are	taken	from	our	monolith	with	four	additions:

The		Date		custom	scalar	resolver.
The		Review.__resolveReference		resolver,	required	because	this	service	is	the	origin	of	the		Review		entity.
The		Review.author		resolver,	which	returns	a		reference		(the	same	reference	passed	to		__resolveReference	
above)—an	object	with	an	entity’s	primary	key.	The	gateway	takes	this	reference	and	provides	it	to	the
	User.__resolveReference		resolver	to	get	the	user	object.
The		User.reviews		resolver,	which	uses	the	data	source		review.all()		method	with	a	MongoDB	selector.
Speaking	of	which,	we	need	a		Reviews		data	source	with	a		.all()		method:

	services/reviews/Reviews.js	

import	{	MongoDataSource	}	from	'apollo-datasource-mongodb'

Chapter	11:	Server	Dev

411

https://github.com/GraphQLGuide/guide-api/blob/federation4_0.2.0/services/reviews/resolvers.js
https://github.com/GraphQLGuide/guide-api/blob/federation4_0.2.0/services/reviews/Reviews.js

export	default	class	Reviews	extends	MongoDataSource	{

		all(query)	{

				return	this.collection.find(query).toArray()

		}

}

We’ll	include	this,	along	with	our	schema	and	resolvers,	when	creating	the	server:

	services/reviews/index.js	

import	{	ApolloServer	}	from	'apollo-server'

import	{	buildFederatedSchema	}	from	'@apollo/federation'

import	resolvers	from	'./resolvers'

import	typeDefs	from	'./schema'

import	Reviews	from	'./Reviews'

import	{	mongoClient	}	from	'../../lib/db'

import	context	from	'../../lib/userContext'

const	server	=	new	ApolloServer({

		schema:	buildFederatedSchema([

				{

						typeDefs,

						resolvers

				}

]),

		dataSources:	()	=>	({

				reviews:	new	Reviews(mongoClient.db().collection('reviews'))

		}),

		context

})

mongoClient.connect()

server.listen({	port:	4002	}).then(({	url	})	=>	{

		console.log(`Reviews	service	ready	at	${url}`)

})

We	use	the	same	context	function	as	the		users		service	and	a	new	port	(4002,	versus	4001	for	the		users		service
and	the	default	4000	for	the	gateway).

One	piece	of	our	old	schema	that	we’re	missing	is		Review.fullReview	.	Since	it	involves	the	author’s	name,	we	need
to	query	the	users	collection.	And	the	service	that	is	responsible	for	querying	the	users	collection	is	the		users	
service.	So	let’s	add	the	field	to	the		users		service:

	services/users/schema.js	

export	default	gql`

		...

		extend	type	Review	@key(fields:	"id")	{

				id:	ID!	@external

				fullReview:	String!

		}

`

Like	with		extend	type	User	,	when	we		extend	type	Review	,	we	repeat	the	directive	and	include	the	primary	key	field.
However,	we	have	an	issue:	The		fullReview		resolver	needs	data	from	the	review	document	(authorId	,		text	,	and
	stars).	By	default,	the	resolver	will	only	receive	an	object	with	the	review’s		id		field.

We	can	solve	this	issue	with	the		@requires		directive:

export	default	gql`

		...

Chapter	11:	Server	Dev

412

https://github.com/GraphQLGuide/guide-api/blob/federation4_0.2.0/services/reviews/index.js
https://github.com/GraphQLGuide/guide-api/compare/federation3_0.2.0...federation4_0.2.0

		extend	type	Review	@key(fields:	"id")	{

				id:	ID!	@external

				text:	String!	@external

				stars:	Int	@external

				authorId:	ID!	@external

				fullReview:	String!	@requires(fields:	"authorId	text	stars")

		}

`

We	list	the	fields	we	require	in	order	to	resolve		fullReview		using		@requires	,	and	we	list	those	fields	above	with
	@external	.	The	last	issue	is	that		authorId		isn’t	currently	part	of	the		Review		type,	so	let’s	add	it	to	the		reviews	
service	schema:

	services/reviews/schema.js	

export	default	gql`

		scalar	Date

		type	Review	@key(fields:	"id")	{

				id:	ID!

				text:	String!

				stars:	Int

				authorId:	ID!

				author:	User!

				createdAt:	Date!

				updatedAt:	Date!

		}

		...

`

This	makes		authorId		appear	in	the	public	gateway	schema	as	well,	which	isn’t	ideal,	as	it	unnecessarily	clutters	the
schema,	but	the	ability	to	define	a	private,	internal	field	is	a	planned	addition	to	the	federation	spec.

Finally,	we	can	implement	the		fullReview		resolver	back	in	the		users		service:

	services/users/resolvers.js	

export	default	{

		...

		Review:	{

				fullReview:	async	(review,	_,	{	dataSources	})	=>	{

						const	author	=	await	dataSources.users.findOneById(

								ObjectId(review.authorId)

)

						return	`${author.firstName}	${author.lastName}	gave	${review.stars}	stars,	saying:	"${review.text}"`

				}

		}

}

We	add	the		reviews		service	to	our	gateway	by	simply	adding	it	to	our		serviceList	:

	gateway.js	

const	gateway	=	new	ApolloGateway({

		serviceList:	[

				{	name:	'users',	url:	'http://localhost:4001/graphql'	},

				{	name:	'reviews',	url:	'http://localhost:4002/graphql'	}

],

		buildService({	url	})	{

				return	new	AuthenticatedDataSource({	url	})

		}

})

We	can	run	both	services	with:

Chapter	11:	Server	Dev

413

https://github.com/GraphQLGuide/guide-api/blob/federation4_0.2.0/services/reviews/schema.js
https://github.com/apollographql/apollo-server/issues/2812
https://github.com/GraphQLGuide/guide-api/compare/federation3_0.2.0...federation4_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/federation3_0.2.0...federation4_0.2.0

$	npm	run	start-services

And	in	another	terminal	run	the	gateway:

$	npm	start

And	test!	

	Here	we	see	both	of	the	jumps	from	the		reviews		service	to	the		users		service	working:	The		reviews		service
resolves		Query.reviews		and	the		Review.author		reference,	and	the		users		service	resolves	the	reference	into	a	user,
as	well	as		User.firstName		and		Review.fullReview	.

Next,	we	can	see	that	going	from	the		users		service	to	the		reviews		service	works.	First	the		users		service	resolves
	Query.user	,	and	then	the		reviews		service	resolves		User.reviews	.

To	see	a	more	detailed	explanation	of	the	query	plan—the	process	by	which	the	gateway	determines	how	to	get	all
the	data	it	needs	from	the	services—we	can	add	this	last	argument	to		ApolloGateway()	:

Chapter	11:	Server	Dev

414

const	gateway	=	new	ApolloGateway({

		serviceList...		

		buildService...

		__exposeQueryPlanExperimental:	true

})

Now	inside	Playground,	we	can	open	the	QUERY	PLAN	tab	on	the	bottom-right:

{

		user(id:	"5d24f846d2f8635086e55ed3")	{

				id

				firstName

				reviews	{

						stars

						text

				}

		}

}

The	above	query	results	in	the	below	query	plan:

QueryPlan	{

		Sequence	{

				Fetch(service:	"users")	{

						{

								user(id:	"5d24f846d2f8635086e55ed3")	{

										id

										firstName

										__typename

								}

						}

				},

				Flatten(path:	"user")	{

						Fetch(service:	"reviews")	{

								{

										...	on	User	{

												__typename

												id

										}

								}	=>

								{

										...	on	User	{

												reviews	{

														stars

														text

												}

										}

Chapter	11:	Server	Dev

415

								}

						},

				},

		},

}

	Sequence		means	the	following	queries	are	done	in	sequence—one	after	the	other.	So	first	it	does	a		Fetch		from	the
	users		service,	and	then	a	fetch	from	the		reviews		service.

Our	first	query	involves	a		Parallel		in	addition	to	a		Sequence	:

{

		reviews	{

				author	{

						firstName

				}

				fullReview

		}

}

QueryPlan	{

		Sequence	{

				Fetch(service:	"reviews")	{

						{

								reviews	{

										author	{

												__typename

												id

										}

										__typename

										id

										authorId

										text

										stars

								}

						}

				},

				Parallel	{

						Flatten(path:	"reviews.@")	{

								Fetch(service:	"users")	{

										{

												...	on	Review	{

														__typename

														id

														authorId

														text

														stars

												}

										}	=>

										{

												...	on	Review	{

														fullReview

												}

										}

								},

						},

						Flatten(path:	"reviews.@.author")	{

								Fetch(service:	"users")	{

										{

												...	on	User	{

														__typename

														id

												}

										}	=>

										{

												...	on	User	{

														firstName

												}

										}

								},

Chapter	11:	Server	Dev

416

						},

				},

		},

}

The	gateway	first	fetches	from	the		reviews		service	and	then	does	two	fetches	from	the		users		service	for	each
review,	all	in	parallel.

We	can	look	at	the	query	plan	to	diagnose	performance	issues—it’s	possible	that	the	query	plan	will	show	a	lot	of
fetches	in	series,	which	increases	latency.	A	fetch	in	series—where	the	second	fetch	happens	after	the	first	is
complete—is	denoted	by		Sequence	.	In	the	case	of	bugs,	the	query	plan	might	also	help	us	discover	why	the	gateway
is	not	working	as	we	expect.

Another	tool	we	have	for	diagnosing	bugs	is	our	gateway’s		RemoteGraphQLDataSource	,	to	which	we	can	add	the
	didReceiveResponse		method,	where	we	can	log	responses	from	the	services:

class	AuthenticatedDataSource	extends	RemoteGraphQLDataSource	{

		willSendRequest...

		didReceiveResponse({	response,	request,	context	})	{

				console.log('response	data:',	response.data)

				return	response

		}

}

Here	are	further	capabilities	we	aren’t	using:

Having	multiple	primary	keys	or	compound	primary	keys
Resolving	other	services’	fields	with	the		@provides		directive
Modifying	the	gateway’s	response
Using	custom	directives

Managed	federation

As	we’ve	been	running	the	gateway,	we’ve	been	seeing	the	output:

								*	Mode:	unmanaged

The	default	gateway	mode	is	unmanaged.	A	gateway	is	managed	when	it’s	connected	to	Apollo	Graph	Manager,	the
SaaS	tool	we’ve	used	previously	for	Analytics	and	Schema	validation.		ApolloGateway		will	connect	to	Graph	Manager
if	we	set		ENGINE_API_KEY		and	make	one	change	to	the	code—remove	the		serviceList		argument	in	the	constructor:

	gateway.js	

const	gateway	=	new	ApolloGateway({

		serviceList:	[

				{	name:	'users',	url:	'http://localhost:4001/graphql'	},

				{	name:	'reviews',	url:	'http://localhost:4002/graphql'	}

],

		buildService({	url	})	{

				return	new	AuthenticatedDataSource({	url	})

		},

		__exposeQueryPlanExperimental:	true

})

In	managed	federation,	instead	of	listing	the	service	URLs	in	the	gateway,	we	register	each	service	with	Graph
Manager,	and	the	gateway	gets	the	service	info	from	Graph	Manager.	This	has	two	main	benefits:

1.	 When	we	add	services,	change	service	URLs,	or	change	service	schemas,	we	don’t	need	to	redeploy	the

Chapter	11:	Server	Dev

417

https://www.apollographql.com/docs/apollo-server/federation/entities/#defining-multiple-primary-keys
https://www.apollographql.com/docs/apollo-server/federation/entities/#defining-a-compound-primary-key
https://www.apollographql.com/docs/apollo-server/federation/entities/#resolving-another-services-field-advanced
https://www.apollographql.com/docs/apollo-server/federation/implementing/#customizing-outgoing-responses
https://www.apollographql.com/docs/apollo-server/federation/implementing/#implementing-custom-directives

gateway.
2.	 When	there’s	an	error	with	one	of	the	changes	in	#1,	the	gateway	can	automatically	fall	back	to	the	last	working

configuration.

We	register	a	service	in	the	same	way	we	registered	our	monolith’s	schema	in	Analytics	and	Schema	validation—with
the		apollo	service:push		command:

$	npx	apollo	service:push	\

				--serviceName=users	\

				--serviceURL="http://users.svc.cluster.local:4001/"	\

				--endpoint="http://localhost:4001/"

We	can	view	the	list	of	services	we’ve	pushed:

$	npx	apollo	service:list

		✔	Loading	Apollo	Project
		✔	Fetching	list	of	services	for	graph	guide-api

name							URL																																						last	updated

─────────		───────────────────────────────────────		────────────────────────

Users						http://users.svc.cluster.local:4001/				5	March	2020	(5	days	ago)

Reviews				http://reviews.svc.cluster.local:4002/		5	March	2020	(5	days	ago)

View	full	details	at:	https://engine.apollographql.com/graph/guide-api/service-list

To	validate	the	service,	we	use		--serviceName		with	the		apollo	service:check		command	we	used	in	the	Schema
validation	section:

$	npx	apollo	service:check	\

				--serviceName=users	\

				--endpoint="http://localhost:4001/"	\

				--tag=prod	\

Just	as	monolith	schemas	can	have	multiple	variants,	denoted	by	the		--tag		option,	so	can	federated
schemas.

This	command	not	only	validates	the	service’s	schema	against	recent	usage	data,	but	it	also	checks	failed
composition—that	is,	a	failure	in	the	ability	to	compose	the	whole	federated	schema.

Now	we	know	how	to	set	up	Graph	Manager	with	federation	and	to	validate	changes	to	services	to	make	sure	they
continue	to	fit	into	the	whole	data	graph	and	don’t	break	clients.

Deploying	federation

The	gateway	and	our	services	are	all	just	Node.js	servers,	so	we	can	use	any	of	the	deployment	options	we	discussed
in	the	main	Deployment	section.	And	Apollo	gateway	doesn’t	yet	support	subscriptions,	so	FaaS	websocket	support
isn’t	an	issue	like	it	was	before.	One	new	issue	is	the	recommendation	that	services	not	be	publicly	accessible.
Federation	services	need	to	expose	extra	information	to	work	with	the	gateway	(note	the	added		_service		and
	_entities		root	query	fields),	and	we	might	not	want	people	to	be	able	to	access	it.

There	are	a	number	of	different	options	for	deploying	services	privately,	including:

IaaS	or	Faas:	Amazon’s	VPC	(Virtual	Private	Cloud)	with	either	EC2	or	Lambda
PaaS:	Heroku’s	Private	Spaces	(requires	an	Enterprise	account)
Kubernetes	private	clusters

And	if	we	didn’t	care	about	the	information	exposure,	we	could	use	public-only	options	like	Vercel	Now.

There	are	three	steps	we	usually	do	around	deployment:

Chapter	11:	Server	Dev

418

https://aws.amazon.com/vpc/
https://www.heroku.com/private-spaces
https://cloud.google.com/kubernetes-engine/docs/concepts/private-cluster-concept

Schema	validation	(apollo	service:check)
Code	deployment	(various)
Push	new	service	information	to	Graph	Manager	(apollo	service:push)

Normally,	it’s	best	to	do	them	in	the	order	listed—first	checking	if	the	service’s	schema	will	fit	in	the	graph	and	not
break	queries,	then	deploying	the	code,	and	finally,	once	the	production	servers	are	ready	to	receive	requests,	telling
the	gateway	about	the	updated	service.	In	CircleCI,	it	would	look	something	like	this:

	.circleci/config.yml	

version:	2

jobs:

		deploy_to_prod:

				docker:

						-	image:	circleci/node:8

				steps:

						-	checkout

						-	run:	npm	install

						-	run:

										name:	Starting	server

										command:	npm	start

										background:	true

						#	Wait	for	server	to	start	up

						-	run:	sleep	5

						-	run:	npx	apollo	service:check	--serviceName=users	--endpoint="http://localhost/graphql"	--tag=prod

						-	run:	npm	run	deploy

						#	Wait	for	production	servers	to	restart

						-	run:	sleep	5

						-	run:	npx	apollo	service:push	--serviceName=users	--endpoint="http://localhost/graphql/"	--tag=prod

If	the		service:check		command	fails,	the	CircleCI	build	will	fail,	and		npm	run	deploy		and	subsequent	commands	won’t
get	run.

When	a		service:push		is	not	backward	compatible	with	our	gateway’s	query	planner	(for	instance	when	we	change
	@key	@requires	@provides		directives),	then	we	should	do	the		service:push		before	deploying.	And	generally,	when	we
make	modifications	that	affect	the	query	planner,	we	need	to	take	the	steps	listed	in	Apollo	Docs:	Modifying	query-
planning	logic.	The	article	has	different	instructions	for	in-place	versus	atomic	changes.	In-place	is	when	we	deploy	a
service	to	the	same	domain,	whereas	atomic	is	when	we	deploy	a	service	to	a	new	domain	and		service:push		to	point
the	gateway	at	the	new	domain.	Let’s	look	at	the	difference	using	Vercel	Now,	which	creates	a	unique	URL	with	every
deployment.

In-place,	deploying	to	the	existing		serviceUrl	:

$	apollo	service:push	\

				--tag=prod	

				--serviceName=users	

				--endpoint="http://localhost:4001"

$	now	--prod

>	https://users.api.graphql.guide

>	Success!	Deployment	ready

Atomic,	changing	the		serviceUrl	:

$	now

>	https://users-61h1hvwis.now.sh/

Chapter	11:	Server	Dev

419

https://www.apollographql.com/docs/graph-manager/managed-federation/advanced-topics/

>	Success!	Deployment	ready

$	apollo	service:push	\

				--tag=prod	\

				--serviceName=users	\

				--endpoint="http://localhost:4001"	\

				--serviceUrl="https://users-61h1hvwis.now.sh/"

In	summary,	we	started	out	this	Apollo	federation	section	by	building	a	users	service	and	connecting	it	to	a	gateway.
Then	we	built	a	second	service	for	reviews	and	extended	entities.	Finally,	we	learned	how	to	set	up	managed
federation	and	how	to	deploy.	࢜

Hasura
Background:	Databases,	SQL

Hasura	is	a	GraphQL	BaaS	(Backend	as	a	Service).	In	Deployment	>	Options	we	covered	IaaS,	PaaS,	and	FaaS,
which	are	different	ways	we	can	host	our	code.	In	BaaS,	we	don’t	have	to	write	code—the	server	and	database
(PostgreSQL	in	the	case	of	Hasura)	are	automatically	set	up	based	on	our	configuration.

While	it’s	true	we	don’t	have	to	write	code,	many	apps	need	at	least	a	little	custom	logic,	so	there	are	various
ways	to	write	our	own	code	or	SQL	statements	and	integrate	them	into	our	Hasura	server’s	functioning.	These
ways—which	we’ll	get	to	later	in	this	section—include	actions,	triggers,	functions,	and	remote	schemas.

[Note:	the	rest	of	this	section	is	forthcoming]

Schema	design
One	schema
User-centric
Easy	to	understand
Easy	to	use
Mutations

Arguments
Payloads

Versioning

One	schema

Ash	graph	durbatulûk,	ash	graph	gimbatul,	ash	graph	thrakatulûk,	agh	gateway-ishi	krimpatul.

Inscription	upon	the	Ring	of	Byron,	written	in	Black	Speech.	Translates	as:

One	graph	to	rule	them	all,	one	graph	to	find	them,	one	graph	to	bring	them	all,	and	in	the	gateway	bind	them.

The	first	principle	of	schema	design	is	there	should	only	be	one	schema!	While	we	can	implement	it	as	smaller
schemas	and	a	federation	gateway,	from	the	perspective	of	the	client,	there	should	only	be	one	schema	(or	data
graph).	And	while	this	may	seem	obvious,	there	are	many	large	companies	whose	GraphQL	adoption	began	by
independent	teams	creating	their	own	GraphQL	APIs.	This	results	in	a	lot	of	duplication	of	effort—not	only	duplicated
resolvers	where	the	schemas	overlap,	but	also	management	of	the	APIs.	We	also	might	wind	up	with	clients	that	need
to	make	requests	from	two	separate	endpoints,	which	our	frontend	devs	might	find...	inconvenient	 .	Which	brings	us
to	the	first	principle	of	design	in	general,	which	is:

Chapter	11:	Server	Dev

420

https://hasura.io/?ref=guide
https://www.cloudflare.com/learning/serverless/glossary/backend-as-a-service-baas/

User-centric

Design	things	for	the	people	who	will	be	using	them.

The	people	who	will	be	using	our	schema	are	primarily	our	frontend	devs	(or,	in	the	case	of	a	public	API,	the	world’s
frontend	devs),	so	we	want	to	design	the	schema	for	them.	We	want	our	API	to	be:

Easy	to	understand.
Easy	to	use.
Hard	for	devs	to	make	mistakes	or	create	bugs	when	querying.

Secondarily,	our	schema	is	used	by	our	end	users	(the	people	using	the	software	written	by	the	frontend	devs)	and
ourselves	(the	backend	devs).	For	our	end	users,	we	take	into	consideration	things	like	latency	(maybe	having	a
single	mutation	that	did	two	things	would	get	results	to	the	user	faster	than	two	mutations	that	had	to	be	executed
serially)	or	the	clarity	of	error	types.	For	ourselves,	we	take	into	consideration	how	difficult	our	schema	will	be	to	run,
secure,	and	update.	For	instance,	we	might	decide	not	to	include	a	query	field	that	would	take	too	much	server
resources	to	resolve.	Or	we	might	structure	parts	of	the	schema	to	make	it	easier	to	add	fields	later	on.

Once	we’ve	read	this	section,	we	can	have	a	meeting	with	our	frontend	devs,	UX	designers,	product	managers,	etc.,
to	create:

The	core	types	and	queries,	based	on	what	data	the	frontend	needs.
Mutations,	based	on	the	user	action	flows.

We	do	not	want	to	start	writing	the	schema	based	on	backend	implementation	/	naming	/	structure	/	tech	details.	It
shouldn’t	look	like	our	REST	APIs	or	mirror	our	database	tables.

One	good	option	for	how	to	structure	your	schema	creation	meeting	is	event	storming,	a	process	from	domain-
driven	design	described	in	this	article.

Our	schema	also	shouldn’t	be	perfect	or	comprehensive.	It	should	only	cover	the	use	cases	for	which	it’s	needed	right
now—we	shouldn’t	design	it	based	on	hypothetical	future	requirements:

Fields	shouldn’t	be	added	to	the	schema	speculatively.	Ideally,	each	field	should	be	added	only	in	response	to	a
concrete	need	by	a	consumer	for	additional	functionality,	while	being	designed	for	maximum	reuse	by	other
consumers	that	have	similar	needs.

Updating	the	graph	should	be	a	continuous	process.	Rather	than	releasing	a	new	“version”	of	the	graph
periodically,	such	as	every	6	or	12	months,	it	should	be	possible	to	change	the	graph	many	times	a	day	if
necessary.	New	fields	can	be	added	at	any	time.	To	remove	a	field,	it	is	first	deprecated,	and	then	removed
when	no	consumers	use	it.	—Principled	GraphQL

Easy	to	understand

We	want	others	to	be	able	to	understand	our	schema	just	by	reading	it.	We	don’t	want	them	to	read	it,	not	fully	get	it,
and	then	have	to	talk	to	us	or	learn	through	trial	and	error.	Ideally	we	don’t	even	want	them	to	have	to	read	schema
descriptions—just	the	types	themselves.	It’s	the	same	reason	why	it’s	easier	to	understand	readable	code	than
commented	code.	For	example:

const	resolvers	=	{

		Mutation:	{

				addWineToCart(_,	{	wineId	},	{	user	})	{

						//	first	check	if	user	is	allowed	to	drink

						if	(new	Date(Date.now()	-	user.dateOfBirth.getTime()).getUTCFullYear()	-	1970	<	21)	{

								throw	new	ForbiddenError()

						}

						...

				}

Chapter	11:	Server	Dev

421

https://en.wikipedia.org/wiki/Domain-driven_design
https://khalilstemmler.com/articles/graphql/ddd/schema-design/
https://principledgraphql.com/agility

		}

}

The		if		statement	condition	is	complicated	and	not	readable	(i.e.,	we	don’t	immediately	understand	what	it	means	by
glancing	at	it),	so	we	read	the	comment	above	it	to	learn	what	the		if		statement	does.	In	the	below	code,	however,
we	can	just	read	it:

const	US_DRINKING_AGE	=	21

const	context	=	async	({	req	})	=>	{

		const	user	=	await	getUser(req.headers.authorization)

		user.age	=	function()	{

				const	millisecondsSinceBirth	=	Date.now()	-	this.dateOfBirth.getTime()

				return	new	Date(millisecondsSinceBirth).getUTCFullYear()	-	1970

		}

		user.isAllowedToDrink	=	function()	{

				return	user.age()	>=	US_DRINKING_AGE

		}

		return	{	user	}

}

const	resolvers	=	{

		Mutation:	{

				addWineToCart(_,	{	wineId	},	{	user	})	{

						if	(!user.isAllowedToDrink())	{

								throw	new	ForbiddenError()

						}

						...

				}

		}

}

While	this	is	many	more	lines	of	code,	that’s	not	as	important	as	readability.	And	all	we	need	to	read	now	is		if
(!user.isAllowedToDrink())	,	which	is	readily	understandable.	At	most,	we	may	need	to	mentally	move	the	location	of
the	“not”	from	“if	not	user	is	allowed	to	drink”	to	“if	user	is	not	allowed	to	drink.“

For	a	schema	example	of	this	concept,	let’s	imagine	we	were	building	an	online	store,	and	we	had	this	mutation:

type	Mutation	{

		add(productId:	ID!):	Cart

		checkout:	Order

}

Then	we	realized	that	while	people	could	probably	infer	the		add		mutation	meant	add	a	product	to	the	cart	(given	the
argument	name	and	return	type),	it	would	be	clearer	if	we	added	a	field	description:

type	Mutation	{

		#	add	product	to	cart

		add(productId:	ID!):	Cart

		checkout:	Order

}

While	the	new	“add	product	to	cart”	description	now	appears	in	Playground	autocomplete	(and	in	the	DOCS	tab	after
clicking		add),	it	has	a	couple	downsides:

It	takes	us	another	step	to	look	for	and	read	the	description,	versus	just	reading	the	field	name.
When	we	read	a	query	document	in	the	client	code,	we	only	see	the	mutation	name—not	the	description.

We	can	remove	the	need	for	a	comment	by	making	the	mutation	name	clearer:

Chapter	11:	Server	Dev

422

type	Mutation	{

		addProductToCart(productId:	ID!):	Cart

		checkout:	Order

}

Readability	starts	with	giving	clear	names	to	things.	In	this	case,	it	was	giving	a	full,	specific	name—not	just		add		or
	addProduct	,	but		addProductToCart	.	Here	are	a	few	more	examples	of	specificity:

Instead	of	just	a		Review		type,	use		ProductReview	.	Then	schema	readers	know	what	the	review	is	for,	and	in	the
future,	we	can	add	other	review	types,	like		StoreReview	,	without	causing	confusion.
If	we	have	two	types	of	reviews,	we	shouldn’t	try	to	fit	them	both	into	a	single	type.	Instead	of		Review	,	with	the
3rd	field	for	product	reviews	and	the	4th	and	5th	fields	for	store	reviews,	we	should	have	two	types	with	different
fields:

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Review	{

		id:	ID!

		stars:	Int!

		productReviewText:	String

		storeDeliveryRating:	Int

		storeCustomerSupportRating:	Int

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	ProductReview	{

		id:	ID!

		stars:	Int!

		text:	String!

}

type	StoreReview	{

		id:	ID!

		stars:	Int!

		deliveryRating:	Int!

		customerSupportRating:	Int

}

And	if	we	want	to	handle	them	together,	we	could	have	them	both	implement	a		Review		interface	and	reference	it:

type	Query	{

		searchReviews(term:	String!):	[Review!]!

}

interface	Review	{

		id:	ID!

		stars:	Int!

}

type	ProductReview	implements	Review	{

		id:	ID!

		stars:	Int!

		text:	String!

}

type	StoreReview	implements	Review	{

		id:	ID!

		stars:	Int!

		deliveryRating:	Int!

		customerSupportRating:	Int

}

Instead	of	a	generic	query	with	a	generic	argument	or	a	list	of	optional	arguments,	make	multiple	specific	queries
with	non-null	arguments:

Chapter	11:	Server	Dev

423

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Query	{

		user(fields:	UserFieldInput):	User!

}

input	UserFieldInput	{

		id:	ID

		username:	String

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	Query	{

		userById(id:	ID!):	User!

		userByUsername(username:	String!):	User!

}

The	Guide	schema	uses	a		Date		type	for	milliseconds	since	epoch.	However,	it	would	be	more	specific	to	call	it	a
	DateTime	,	since	it	includes	both	the	date	and	the	time.	That	would	allow	us	to	add		Date		(e.g.,		1/1/2000)	and
	Time		(e.g.,		13:37)	types	in	the	future.	It	would	also	be	clearer	for	devs	who	are	used	to	systems	that	handle
both	Dates	and	DateTimes.

Using	specific	naming	is	part	of	a	broader	category	of	being	explicit—we	want	to	know	what	fields	and	types	mean,
how	to	use	them,	and	how	they	behave,	without	guessing	or	trial	and	error.	Here	are	a	few	further	areas	in	which	we
can	be	explicit:

Using	custom	scalars	instead	of	default	scalars.	Instead	of		createdAt:	Int	,		createdAt:	DateTime	.	Instead	of
	phone:	String	,		phone:	PhoneNumber	.	It	explicitly	shows	what	type	of	value	it	is,	and	we	can	trust	that	the	custom
scalar	code	will	validate		DateTime	s	and		PhoneNumber	s	wherever	they’re	used	in	the	schema.
Include	default	arguments:

type	Query	{

		reviews(

				skip:	Int	=	0,

				limit:	Int	=	10,

				orderBy:	ReviewOrderBy	=	createdAt_DESC

):	[Review!]!

}

enum	ReviewOrderBy	{

		createdAt_ASC	

		createdAt_DESC

}

Use	non-null	(!)	to	explicitly	denote	which	values	will	always	be	returned,	or	which	arguments	are	required.
However,	in	some	cases	it’s	better	to	not	use	it:

If	clients	use	multiple	root	query	fields	in	a	single	document,	then	leave	them	all	nullable,	because	if	one	is
non-null	and	null	is	returned	(e.g.,	due	to	an	error),	it	will	null	cascade	all	the	way	up	to	a		{	"data":	null	}	
response,	which	will	prevent	the	client	from	receiving	the	other	root	query	fields.
If	there’s	any	chance	a	field	will	occasionally	not	be	available,	for	instance	a		User.githubRepositories		field
whose	resolver	relies	on	the	GitHub	API	being	accessible,	make	it	null.	We	do	this	so	that	when	we	can’t
reach	the	GitHub	API	(their	servers	are	down,	or	there’s	a	network	issue,	or	we	hit	our	API	quota,	for
example),	queries	for	user	data	can	receive	the	other	fields.

Build	expected	errors	into	the	schema.	Then	devs	will	know	what	error	responses	look	like	and	will	be	able	to
handle	them	more	easily	than	if	they	were	in	the		"errors"		JSON	response	property.

In	the	below	Mutations	section,	we’ll	include	expected	errors	in	the	response	type.
Earlier	in	the	Union	errors	section,	we	included	deleted	and	suspended	users	in	the	search	results:

type	Query	{

Chapter	11:	Server	Dev

424

		searchUsers(term:	String!):	[UserResult!]!

}

union	UserResult	=	User	|	DeletedUser	|	SuspendedUser

We	can	also	prevent	errors	from	happening	with	our	schema	structure.	For	instance,	if	there	are	some	queries
that	are	public	and	some	for	which	the	client	must	be	logged	in,	we	can	prevent	them	from	them	receiving
unauthorized	errors	by	having	the	public	queries	as	root	fields	and	the	logged-in	queries	as		Viewer		fields:

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Query	{

		me:	User

		teams:	[Team]

		#	must	be	logged	in

		projects:	[Project]

		#	must	be	logged	in

		reports:	[Report]

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	Query	{

		me:	Viewer

		teams:	[Team]

}

type	Viewer	{

		id:	ID

		name:	String

		projects:	[Project]

		reports:	[Report]

}

Only	when	we	can’t	make	a	meaning	or	behavior	explicit	should	we	add	a	description	to	the	schema.

Lastly,	a	couple	more	things	that	are	helpful	for	readability:

Consistency	in	naming.	For	instance,	how	we	name	queries	for	a	single	item	versus	a	list:

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Query	{

		project(id:	ID):	Project

		projects:	[Project]

		getReport(id:	ID):	Report

		listReports:	[Report]

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	Query	{

		project(id:	ID):	Project

		projects:	[Project]

		report(id:	ID):	Report

		reports:	[Report]

}

Or	the	verbs	we	use	with	mutations:

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Mutation	{

Chapter	11:	Server	Dev

425

		deleteProject(id:	ID):	DeleteProjectPayload

		removeReport(id:	ID):	RemoveReportPayload

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	Mutation	{

		deleteProject(id:	ID):	DeleteProjectPayload

		deleteReport(id:	ID):	DeleteReportPayload

}

Grouping	fields	into	sub-objects:	When	a	group	of	fields	are	related,	we	can	create	a	new	object	type.	Imagine
our	reviews	had	comments	that	rated	the	helpfulness	of	the	review:

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Review	{

		id:	ID!

		text:	String!

		stars:	Int

		commentCount:	Int!

		averageCommentRating:	Int

		averageCommentLength:	Int

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	Review	{

		id:	ID!

		text:	String!

		stars:	Int

		commentStats:	CommentStats!

}

type	CommentStats	{

		count:	Int!

		averageRating:	Int

		averageLength:	Int

}

Easy	to	use

While	ease	of	use	is	determined	largely	by	ease	of	understanding,	there	are	other	factors	that	can	contribute:

Include	fields	that	save	the	client	from	having	to	go	through	computation,	logic,	or	other	processing.	For	instance,
we	provide	Review.fullReview:

const	resolvers	=	{

		Review:	{

				fullReview:	async	(review,	_,	{	dataSources	})	=>	{

						const	author	=	await	dataSources.users.findOneById(

								review.authorId,

								USER_TTL

)

						return	`${author.firstName}	${author.lastName}	gave	${review.stars}	stars,	saying:	"${review.text}"`

				},

		}

}

If	the	client	wants	the	whole	review	text	in	a	sentence	like	that,	they	could	construct	it	themselves	by	querying	for	all
the	pieces	of	information	and	putting	it	together.	Instead,	we	do	it	for	them,	saving	them	the	effort.	Similarly,	if	our
clients	often	want	the	total	comment	count,	we	can	include	that	in	the	connection	so	they	don’t	have	to	do	the	work	of
requesting	all	the	comments	and	counting	them:

type	Review	{

Chapter	11:	Server	Dev

426

		id:	ID!

		text:	String!

		comments:	CommentsConnection!

}

type	CommentsConnection	{

		nodes:	[Comment]

		totalCount:	Int!

}

Or,	if	we	have	a	purchasing	app	where	orders	have	complex	states	and	business	logic,	we	could	include	a
	readyForSubmission		field	so	the	client	doesn’t	have	to	write	the	logic	code:

type	Order	{

		id:	ID!

		...

		readyForSubmission:	Boolean!

}

Make	fields	easy	to	use.	For	instance	when	dealing	with	money,	fractional	amounts	are	often	more	difficult	to
work	with	than	integers,	so	we	can	provide		Int		fields:

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

type	Charge	{

		dollars:	Float!

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

type	Charge	{

		cents:	Int!

}

If	we	have	a	public	API	for	third	parties,	then	we	can	make	their	integration	easier	by	supporting	their	preferred
libraries.	In	the	case	of	GraphQL,	the	only	common	library	with	schema	requirements	is	Relay.	The	list	of
requirements	includes	the	cursor	connections	we	discussed	earlier,	a	particular	structure	to	mutations,	and	a
common		Node		interface	for	object	types:

interface	Node	{

		id:	ID!

}

type	User	implements	Node	{

		id:	ID!

		firstName:	String!

}

type	Review	implements	Node	{

		id:	ID!

		text:	String!

}

Mutations

As	with	the	rest	of	the	schema,	the	first	thing	to	think	about	for	mutations	is	their	names.	While	some	choose	to	do
	typeVerb		(like		reviewCreate	,		reviewUpdate	,	and		reviewDelete)	so	that	GraphiQL’s	alphabetical	schema	docs	will
group	mutations	by	type,	we	recommend	the	more	readable		verbType	:		createReview	,		updateReview	,	and
	deleteReview	.	And,	as	mentioned	before,	we	recommend	verb	consistency—so	for	example,	using		deleteUser	
instead	of		removeUser		to	match		deleteReview	.

Chapter	11:	Server	Dev

427

https://relay.dev/docs/en/graphql-server-specification.html

However,	we	don’t	recommend	uniformly	implementing		create|update|delete		mutations	for	each	type.	Instead,
provide	mutations	according	to	the	needs	of	the	client—which	actions	will	they	be	performing?	In	some	cases,	types
are	never	deleted,	or	they’re	created	automatically,	or	the	update	step	should	be	named	something	else	or	should
happen	in	stages.	For	instance,	imagine	a	store	checkout	process	in	which	the	server	needs	to	do	something	(save
data,	validate,	talk	to	an	API,	etc.)	for	each	of	these	steps:

Create	a	cart.
Add	products	to	the	cart.
Apply	a	coupon	code.
Add	shipping	address.
Add	payment	information.
Submit	order.

We	could	have	the	client	use		createCart		for	the	first	step	and	a	single	generic		updateCart		mutation	for	each	of	the
rest.	(First	they’d	call		updateCart(productId)	,	and	then		updateCart(couponCode)	,	etc.)	However,	it	would	require	a
large	amount	of	optional	arguments,	and	we	would	have	to	write	a	long	field	description	telling	the	dev	which
arguments	to	use	in	which	order.	Instead,	we	should	write	multiple	mutations	with	specific	names:

type	Mutation	{

		createCart:	Cart!

		addProductsToCart(input:	AddProductsToCartInput):	Cart!

		applyCoupon(input:	ApplyCouponInput):	Cart!

		addShippingAddressToCart(input:	AddShippingAddressToCartInput):	Cart!

		addPaymentToCart(input:	AddPaymentToCartInput):	Cart!

		createOrder(cartId:	ID!):	Order!

}

input	AddProductsToCartInput	{

		cartId:	ID!

		productIds:	[ID!]!

}

input	ApplyCouponInput	{

		cartId:	ID!

		code:	String!

}

input	AddShippingAddressToCartInput	{

		cartId:	ID!

		address:	AddressInput!

}

input	AddPaymentToCartInput	{

		cartId:	ID!

		payment:	PaymentMethodInput!

}

For	most	of	the	mutations,	we	end	with		ToCart		to	be	specific.	Just		addProducts		could	be	adding	them	to	a
wishlist,	or		addPayment		could	be	adding	a	payment	method	to	your	account.	And	if	there’s	anything	besides	a
cart	to	which	a	coupon	might	be	applied	in	the	future,	we	should	change		applyCoupon		to		applyCouponToCart	!
We	do		addProductsToCart		instead	of	the	singular		addProductToCart		in	case	the	client	might	want	to	add	multiple
products	at	a	time	(it’s	easier	to	send	a	single	mutation	with	an	array	of	IDs	than	a	single-ID	mutation	many
times).

Arguments

The	most	common	pattern	for	mutation	arguments	is	a	single	input	object	type.	Some	people	choose	to	instead	have
a	two-argument	limit,	when	one	argument	is	an	ID,	like	this:

type	Mutation	{

		applyCoupon(cartId:	ID!,	coupon:	String!):	Cart!

Chapter	11:	Server	Dev

428

		addShippingAddressToCart(cartId:	ID!,	address:	AddressInput!):	Cart!

}

A	couple	benefits	of	a	single	argument	are:

The	mutation	is	more	readable	with	a	single	input	object	than	with	a	long	list	of	scalars	and	input	objects.
The	input	object	is	more	evolvable	(we	can’t	deprecate	an	argument,	but	we	can	deprecate	an	input	object	field).

Here	are	a	few	more	considerations	when	it	comes	to	mutation	arguments:

Earlier	we	recommended	creating	specific	scalar	types	over	using	built-in	generics,	but	we	may	want	to	avoid	that
for	mutation	arguments.	If	we	use	our	own	scalar	types,	then	the	client	may	have	to	go	through	two	requests	to
discover	all	the	errors.	If	there	are	errors	in	both	the	scalar	validation	(for	instance,	an	invalid	phone	number)	and
in	the	business	logic	(for	instance,	the	order	size	is	too	large),	then	the	client’s	first	request	will	only	receive	the
validation	error.	When	they	send	a	second	request	with	a	fixed	phone	number,	they’ll	receive	the	business	logic
error.	We	can	improve	the	client’s	experience	by	allowing	them	to	receive	all	errors	at	once,	which	we	do	by	using
	String		instead	of	our	own		PhoneNumber		scalar,	and	doing	both	the	phone	number	validation	and	the	business
logic	checks	in	our	resolver	code.	Then	our	resolver	can	return	all	the	errors	together.	We	also	have	more
flexibility	on	how	we	return	the	error—a	scalar	validation	error	shows	up	in	the		"errors"		attribute	of	the	JSON
response,	whereas	in	our	resolver,	we	can	either	throw	an	error	or	return	an	error—an	option	we’ll	see	in	the	next
section.
The	client	can	generate	and	provide	a	unique		clientMutationId		for	mutations	they	want	to	make	sure	are
idempotent—that	don’t	get	executed	multiple	times.	For	instance,	if	the	client	sent	the	below	mutation	and	then
lost	internet	connection	and	resent,	the	server	could	receive	the	mutation	a	second	time	once	the	connection	is
back.	To	avoid	this	issue,	our	server	code	could	check	to	see	if	the		clientMutationId		on	the	second	mutation
matches	the	first.	If	it	does,	our	code	won’t	process	the	second	mutation.

mutation	{	

		buyStock(input:	{	ticker:	"TSLA",	shares:	10,	clientMutationId:	"mvvAb9sDGnPYNtZm"	})	{	

				id	

		}	

}

type	Mutation	{

		buyStock(input:	BuyStockInput):	Order

}

input	BuyStockInput	{

		ticker:	String!

		shares:	Int!

		clientMutationId:	ID!

}

While	it’s	tempting	to	DRY	our	code	by	sharing	input	types	between	create	and	update	mutations,	we	don’t
recommend	it.	We	have	to	use	at	least	one	non-null	field	for	the	ID	(since	it’s	not	used	during	creation),	and	we
have	to	make	all	fields	non-null	if	we	want	to	be	able	to	provide	the	update	mutation	with	just	the	fields	we	want	to
change.	However,	doing	that	removes	the	clarity	around	which	fields	are	required	when	creating.

#	<img	align='absmiddle'	alt=':-1:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/-1.png'	ti

tle=':-1:'	/>

mutation	{

		createReview(input:	ReviewInput!):	Review!

		updateReview(input:	ReviewInput!):	Review!

}

input	ReviewInput	{

		#	only	provide	when	updating

		id:	ID

		#	required	when	creating

Chapter	11:	Server	Dev

429

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

		text:	String

		stars:	Int

}

#	<img	align='absmiddle'	alt=':thumbsup:'	class='emoji'	src='/gitbook/gitbook-plugin-advanced-emoji/emojis/thum

bsup.png'	title=':thumbsup:'	/>

mutation	{

		createReview(input:	CreateReviewInput!):	Review!

		updateReview(input:	UpdateReviewInput!):	Review!

}

input	CreateReviewInput	{

		text:	String!

		stars:	Int

}

input	UpdateReviewInput!	{

		id:	ID!

		text:	String

		stars:	Int

}

Payloads

So	far	our	mutations	have	been	returning	the	object	they	alter	or	throwing	errors.	For	instance,		createReview		might
return	a		Review		object	or	throw	an		InputError		that’s	serialized	in	the	response	JSON’s		"errors"		attribute.
However,	there	are	a	couple	issues	with	this:

Returning	a	single	type	is	inflexible—what	if	multiple	types	are	altered	during	the	mutation,	or	we	want	to	provide
the	client	with	more	information	about	how	the	mutation	went?
As	we	discussed	in	Union	errors,	it’s	better	to	return	expected	errors	than	to	throw	them:	It’s	easier	for	client	code
to	handle,	and	it	documents	the	possible	errors	and	their	associated	data	(whereas	thrown	errors	like	the
	InputError		we	created	are	undocumented	/	do	not	appear	in	the	schema).

We	solve	both	of	these	issues	by	returning	a	payload	type:

type	Mutation	{

		createReview(input:	CreateReviewInput):	CreateReviewPayload

}

type	CreateReviewPayload	{

		review:	Review

		user:	User

		errors:	[Error!]!

}

type	Error	{

		message:	String!

		code:	ErrorCode

		field:	Field

}

When	we	create	a	review,	our		User.reviews		changes.	We	can	include	the	user	in	the	payload	so	that	the	client	can
easily	update	their	cached	user	object.	We	make	both	the		review		and		user		optional	because	we	might	instead
return		errors	.	The	client’s	operation	would	look	like:

mutation	{

		createReview(input:	{	text:	"",	stars:	6	})	{

				review	{

						id

						text

						stars

						createdAt

				}

				user	{

Chapter	11:	Server	Dev

430

						reviews	{

								id

						}

				}

				errors	{

						message

						code

						field

				}

		}

}

And	the	response	would	be:

{

		"data":	{

				"createReview":	{

						"errors":	[{

								"message":	"Text	cannot	be	empty",

								"code":	105,

								"field":	"input.text"

						},	{

								"message":	"Stars	must	be	an	integer	between	0	and	5,	inclusive",

								"code":	106,

								"field":	"input.stars"

						}]

				}

		}

}

In	cases	when	the	mutation	alters	an	unknown	set	of	types,	we	can	use	the	Query	type	to	allow	the	client	to	get	back
whatever	data	they’d	like	after	the	mutation	is	complete:

type	Mutation	{

		performArbitraryOperation(operation:	ArbitraryOperation):	PerformArbitraryOperationPayload

}

type	CreateReviewPayload	{

		query:	Query

		errors:	[Error!]!

}

Versioning

Most	APIs	change	over	time.	We	can	deploy	backward-compatible	changes	at	any	time.	We	usually	try	to	avoid
making	breaking	changes,	i.e.,	changes	that	may	break	client	code	using	that	part	of	the	API.	However,	sometimes
we	want	to	make	a	breaking	change	because	it	would	be	a	significant	improvement.	If	our	API	is	only	used	by	our
clients,	and	all	our	clients	are	web	apps,	then	we	can	publish	a	new	version	of	the	client	at	the	same	time	as	a
breaking	API	change,	and	we	can	force	all	the	currently	loaded	webpages	(now	out	of	date)	to	reload,	and	nothing	will
be	broken.	However,	if	we	don’t	want	to	force-reload	our	web	app,	or	if	we	have	mobile	apps	(which	we	can’t	force-
reload),	or	if	we	have	a	public	API	(which	is	used	by	third	parties,	whose	code	we	don’t	have	control	over),	then	we
have	two	options:

Global	versioning.	Publish	a	new	version	of	the	API	at	a	different	URL,	like		api.graphql.guide/v2/	.	Then	clients
using	the	original	URL	will	continue	to	work.
Deprecation:

Add	a	deprecation	notice	so	that,	going	forward,	devs	don’t	use	the	field.
Notify	existing	API	consumers	of	the	deprecation	so	they	can	change	their	code.
Monitor	the	usage	of	the	field.
When	the	field	usage	falls	under	a	tolerable	threshold	(number	of	will-be-broken	requests),	remove	it.

Chapter	11:	Server	Dev

431

Here	are	a	couple	examples	of	deprecation:

type	User	{

		id:	ID!

		name:	String	@deprecated(

				reason:	"Replaced	by	field	`fullName`"

)

		fullName:	String

}

type	Mutation	{

		createReview(text:	String!,	stars:	Int):	Review	@deprecated(

				reason:	"Replaced	by	field	`createReviewV2`"

)

		createReviewV2(input:	CreateReviewInput):	CreateReviewPayload		

}

While	only	the	deprecation	option	includes	making	the	breaking	change	as	a	step,	it	usually	eventually	happens	for
global	versioning	as	well.	There	is	always	a	cost	of	maintaining	the	old	code—whether	the	code	is	backing	an	earlier
global	version	or	a	deprecated	field—and	at	some	point,	that	cost	outweighs	the	cost	of	breaking	old	clients.	For
instance,	we	could	have	a	globally	versioned	API	that’s	currently	on	version	5,	and	almost	all	of	the	clients	are	using
v2–v5,	and	we	decide	that	we’d	rather	break	the	few	clients	still	using	v1	than	continue	maintaining	it.

We	recommend	using	the	deprecation	process	(also	called	continuous	evolution)	in	lieu	of	versioning.	The
downside	of	deprecating	is	the	schema	can	get	cluttered	with	deprecated	fields.	The	downside	of	versioning	is	the
large	cost	of	maintaining	old	server	versions	and	the	increased	time	it	takes	to	make	changes.	Given	the	complexity	of
deploying	and	maintaining	a	new	version	of	the	API,	we	batch	changes	and	create	new	versions	infrequently,	whereas
we	can	deprecate	at	any	time.

There	are	a	few	reasons	why	continuous	evolution	is	the	better	practice	compared	to	versioning,	which	was	common
with	REST	APIs:

Adding	is	backward	compatible.	With	REST	APIs	that	don’t	have	control	over	what	data	is	returned	from	an
endpoint,	any	changes,	even	returning	more	data	than	the	client	expects,	can	be	breaking.	With	GraphQL	APIs,
adding	a	new	field	doesn’t	affect	current	clients—they	only	receive	the	fields	specified	in	their	query	document.
Deprecation	is	built	into	the	GraphQL	spec,	and	GraphQL	tooling	will	show	developers	when	they’re	using	a
deprecated	field,	so	clients	will	update	their	code	more	easily	and	sooner.
Since	all	the	fields	requested	are	in	the	query	document,	we	can	know	how	many	clients	are	using	deprecated
fields.	If	we	added	a		fullName		field	to	the	user	REST	endpoint,	we	wouldn’t	know	how	many	clients	were	still
using	the		name		field.	With	GraphQL,	we	know!

We	can	currently	deprecate	fields	and	enum	values,	and	deprecating	arguments	and	input	fields	will	likely	be	added	to
the	spec	in	the	near	future.

We	deprecate	a	field	instead	of	removing	it	because	removing	a	field	is	a	breaking	change.	But	there	are	other
breaking	changes	to	watch	out	for	as	well:

Removing	fields,	enum	values,	union	members,	or	interfaces.
Changing	the	type	of	a	field.
Making	an	argument	or	input	field	non-null.
Adding	a	new	non-null	argument	or	input	field.
Making	a	non-null	argument	nullable.
Changing	a	field	from	non-null	to	nullable	isn’t	automatically	breaking,	but	if	the	server	ever	does	return	null	for
that	field,	the	client	can	break.

Finally,	it’s	possible	to	break	clients	by	adding	new	enum	values,	union	members,	and	interface	implementations	if	the
client	logic	depends	on	all	the	data	they	receive	fitting	their	(outdated)	set	of	values/members/implementations.
Ideally,	clients	will	always	leave	open	the	possibility	that	those	things	could	be	added.

Chapter	11:	Server	Dev

432

Custom	schema	directives
Background:	Directives

If	you’re	jumping	in	here,		git	checkout	25_0.1.0		(tag	25_0.1.0,	or	compare	25...directives)

Apollo	Server	includes	the	default	directives		@deprecated	,		@skip	,	and		@include	.		@skip		and		@include		are	query
directives,	so	they	don’t	appear	in	our	schema;	instead,	they’re	included	in	query	documents	and	can	be	used	on	any
field.		@deprecated		is	a	schema	directive,	and	when	we	add	it	after	a	field	or	enum	value	in	our	schema,	the	directive
will	be	included	in	responses	to	introspection	queries.

We	can	make	our	own	schema	directives	in	Apollo	Server.	When	we	add	them	to	specific	places	in	our	schema,	those
parts	of	the	schema	are	modified	or	evaluated	differently	when	resolving	requests.	Three	examples	we’ll	code	are
	@tshirt	,	which	modifies	an	enum	value’s	description;		@upper	,	which	takes	the	result	of	a	field	resolver	and	returns
the	uppercase	version	instead;	and		@auth	,	which	throws	an	error	if	the	user	isn’t	authorized	to	view	that	object	or
field.

@tshirt
@upper
@auth

@tshirt

Schema	directives	are	implemented	by	subclassing		SchemaDirectiveVisitor		and	overriding	one	or	more	methods	of
the	format		visitFoo()	,	where		Foo		is	the	part	of	the	schema	to	which	the	directive	is	applied.	Possible	parts	of	the
schema	are:

Whole	schema
Scalar
Object
Field	definition
Argument	definition
Interface
Union
Enum
Enum	value
Input	object
Input	field	definition

For	example,	if	it	were	applied	to	an	enum	value:

	src/schema/schema.graphql	

directive	@tshirt	on	ENUM_VALUE

enum	Package	{

		BASIC

		PRO	

		FULL	@tshirt

		TRAINING	@tshirt

		#	Group	license.

		TEAM	@tshirt

}

Then	our	subclass	would	override		visitEnumValue()	:

	src/directives/TshirtDirective.js	

Chapter	11:	Server	Dev

433

https://github.com/GraphQLGuide/guide-api/tree/25_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.1.0...directives_0.1.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...directives_0.2.0
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/TshirtDirective.js

import	{	SchemaDirectiveVisitor	}	from	'apollo-server'

class	TshirtDirective	extends	SchemaDirectiveVisitor	{

		visitEnumValue(value)	{

				...

				return	value

		}

}

To	determine	the	structure	of		value	,	we	can	either	use		console.log()		or	look	up	the	type	definition	of	an	enum
value	in	the		graphql-js		library.	All	type	definitions	are	in		src/type/definition.js	,	where	we	can	find:

export	type	GraphQLEnumValue	/*	<T>	*/	=	{|

		name:	string,

		description:	?string,

		value:	any	/*	T	*/,

		isDeprecated:	boolean,

		deprecationReason:	?string,

		extensions:	?ReadOnlyObjMap<mixed>,

		astNode:	?EnumValueDefinitionNode,

|};

	isDeprecated		and		deprecationReason		are	the	fields	that	are	used	by	the		@deprecated		directive.

It	has	an	optional		description		field,	to	which	we	can	add	a	note	about	T-shirts	 :

	src/directives/TshirtDirective.js	

import	{	SchemaDirectiveVisitor	}	from	'apollo-server'

export	default	class	TshirtDirective	extends	SchemaDirectiveVisitor	{

		visitEnumValue(value)	{

				value.description	+=	'	Includes	a	T-shirt.'

				return	value

		}

}

Then	we	need	to	get	it	to		ApolloServer()	:

	src/directives/index.js	

import	TshirtDirective	from	'./TshirtDirective'

export	default	{

		tshirt:	TshirtDirective

}

	src/index.js	

import	schemaDirectives	from	'./directives'

const	server	=	new	ApolloServer({

		typeDefs,

		schemaDirectives,

		resolvers,

		dataSources,

		context,

		formatError

})

Now	we	can	check	the	description	by	using	the	search	box	inside	Playground’s	docs	tab:

Chapter	11:	Server	Dev

434

https://github.com/graphql/graphql-js/blob/688f93c9153c1b69d522c130200373e75d0cfc7e/src/type/definition.js#L1419-L1427
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/TshirtDirective.js
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/index.js
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...directives_0.2.0

@upper

When	we’re	making	a	directive	to	use	on	fields,	oftentimes	what	we	want	to	do	is	call	the	resolver	and	modify	the
result,	like	this:

import	{	SchemaDirectiveVisitor	}	from	'apollo-server'

import	{	defaultFieldResolver	}	from	'graphql'

class	MyDirective	extends	SchemaDirectiveVisitor	{

		visitFieldDefinition(field)	{

				const	{	resolve	=	defaultFieldResolver	}	=	field

				field.resolve	=	async	function(...args)	{

						const	result	=	await	resolve.apply(null,	args)

						//	modify	result

						//	...

						return	result

				}

		}

}

Here	we	override	the		visitFieldDefinition()		function,	which	receives	a		field		object	that	has	a		resolve		property:

export	type	GraphQLField<

		TSource,

		TContext,

		TArgs	=	{	[argument:	string]:	any,	...	},

>	=	{|

		name:	string,

		description:	?string,

		type:	GraphQLOutputType,

		args:	Array<GraphQLArgument>,

		resolve?:	GraphQLFieldResolver<TSource,	TContext,	TArgs>,

		subscribe?:	GraphQLFieldResolver<TSource,	TContext,	TArgs>,

		isDeprecated:	boolean,

		deprecationReason:	?string,

Chapter	11:	Server	Dev

435

https://github.com/graphql/graphql-js/blob/688f93c9153c1b69d522c130200373e75d0cfc7e/src/type/definition.js#L959-L974

		extensions:	?ReadOnlyObjMap<mixed>,

		astNode:	?FieldDefinitionNode,

|};

We	redefine		field.resolve	,	calling	the	original	resolve	or	the		defaultFieldResolver	,	which	resolves	the	field	as	a
property	on	the	parent	object	when	there	is	no	resolver	function	(e.g.,		User:	{	firstName:	(user,	_,	context)	=>
user.firstName	}).	Then	we	modify	and	return	the	result.

Let’s	use	this	format	to	implement	an		@upper		resolver,	which	transforms	the	result	to	uppercase:

	src/schema/schema.graphql	

directive	@upper	on	FIELD_DEFINITION

type	Query	{

		hello(date:	Date):	String!	@upper

		isoString(date:	Date!):	String!

}

And	now,	since	we	can’t	convert	an	emoji	to	uppercase,	we	need		Query.hello		to	return	lowercase	ASCII:

	src/resolvers/index.js	

const	resolvers	=	{

		Query:	{

				hello:	()	=>	'world	',

				...

		}

}

As	above,	we	redefine	the	field’s		resolve		function,	calling	the	original.	This	time	we	check	if	the	result	is	a	string	and
call		.toUpperCase()	:

	src/directives/UppercaseDirective.js	

import	{	SchemaDirectiveVisitor	}	from	'apollo-server'

import	{	defaultFieldResolver	}	from	'graphql'

export	default	class	UppercaseDirective	extends	SchemaDirectiveVisitor	{

		visitFieldDefinition(field)	{

				const	{	resolve	=	defaultFieldResolver	}	=	field

				field.resolve	=	async	function(...args)	{

						const	result	=	await	resolve.apply(this,	args)

						if	(typeof	result	===	'string')	{

								return	result.toUpperCase()

						}

						return	result

				}

		}

}

We	include	the	directive	class	by	adding	it	to	this	object,	where	the	key	corresponds	with	the	directive	name		@upper	:

	src/directives/index.js	

import	TshirtDirective	from	'./TshirtDirective'

import	UppercaseDirective	from	'./UppercaseDirective'

export	default	{

		tshirt:	TshirtDirective,

		upper:	UppercaseDirective

}

Chapter	11:	Server	Dev

436

https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...directives_0.2.0
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...directives_0.2.0
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/UppercaseDirective.js
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/index.js

@auth

Directives	can	also	take	arguments,	which	can	be	scalars,	enums,	or	input	object	types.		@deprecated	,	for	instance,
takes	a		reason		argument	of	type		String	:

type	User	{

		firstName

		first_name:	String	@deprecated(reason:	"Use	`firstName`.")

}

We’ll	be	implementing	a	directive	that	takes	an	enum	argument:

	src/schema/schema.graphql	

directive	@auth(

		requires:	Role	=	ADMIN,

)	on	OBJECT	|	FIELD_DEFINITION

enum	Role	{

		USER

		MODERATOR

		ADMIN

}

Our		@auth		directive	is	for	specifying	which	objects	or	fields	(on	OBJECT	|	FIELD_DEFINITION)	require	a		Role	.	If	the
	requires		argument	isn’t	used,	then	the	default		ADMIN		is	used.

Our		AuthDirective		class	is	similar	to		UppercaseDirective		in	that	we’re	wrapping	the		field.resolve()		function	in	a
new	function.	However,	instead	of	modifying	the	result,	our	wrapping	function	throws	an	error	if	the	current	user’s	role
doesn’t	match	the	required	role:

	src/directives/AuthDirective.js	

import	{	SchemaDirectiveVisitor,	ForbiddenError	}	from	'apollo-server'

import	{	defaultFieldResolver	}	from	'graphql'

export	default	class	AuthDirective	extends	SchemaDirectiveVisitor	{

		visitFieldDefinition(field)	{

				const	{	resolve	=	defaultFieldResolver	}	=	field

				field.resolve	=	(...resolverArgs)	=>	{

						const	requiredRole	=	this.args.requires

						const	context	=	resolverArgs[2]

						if	(!context.user.roles.includes(requiredRole))	{

								throw	new	ForbiddenError(`You	don't	have	permission	to	view	this	data.`)

						}

						return	resolve.apply(null,	resolverArgs)

				}

		}

}

Chapter	11:	Server	Dev

437

https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...directives_0.2.0
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/AuthDirective.js

The	directive’s	arguments	are	available	at		this.args.*	.		resolverArgs[2]	,	the	third	argument	passed	to	resolvers,	is
always	the	context	where	we	put	the	user	doc.	We	assume	that	the	user’s	roles	are	stored	in	the	user	doc	as	an	array
of	strings	(like		roles:	['USER']		or		roles:	['USER',	'ADMIN']).

Since		@auth		works		on	OBJECT	|	FIELD_DEFINITION	,	we	also	need	to	implement	the		visitObject()		method.	It	needs
to	go	through	each	field	in	the	object	and	wrap	the		resolve()		function.	We	also	need	to	mark	if	a	field	has	been
wrapped,	so	that	we	don’t	double-wrap	(if	we	use		@auth		on	both	the	object	and	field		foo		in	the	object,
	visitObject()		will	wrap	all	fields,	and	then		visitFieldDefinition()		will	wrap		foo	,	which	has	already	been
wrapped).

import	{	SchemaDirectiveVisitor	}	from	'apollo-server'

import	{	defaultFieldResolver	}	from	'graphql'

export	default	class	AuthDirective	extends	SchemaDirectiveVisitor	{

		visitObject(objectType)	{

				objectType._requiredRole	=	this.args.requires

				const	fields	=	objectType.getFields()

				Object.keys(fields).forEach(fieldName	=>	{

						const	field	=	fields[fieldName]

						this._wrapResolveFn(field,	objectType)

				})

				objectType._wrappedResolveFn	=	true

		}

		visitFieldDefinition(field,	{	objectType	})	{

				field._requiredRole	=	this.args.requires

				const	alreadyWrapped	=	objectType._wrappedResolveFn

				if	(!alreadyWrapped)	{

						this._wrapResolveFn(field,	objectType)

				}

		}

		_wrapResolveFn(field,	objectType)	{

				const	{	resolve	=	defaultFieldResolver	}	=	field

				field.resolve	=	(...args)	=>	{

						const	requiredRole	=	field._requiredRole	||	objectType._requiredRole

						const	context	=	args[2]

						if	(!context.user.roles.includes(requiredRole))	{

								throw	new	Error('not	authorized')

						}

						return	resolve.apply(null,	args)

				}

		}

}

We	save	the	required	role	on	the	field	and	the	object	so	that	inside	the	wrapper,	we	can	determine	which	to	use
(preferencing	a	role	saved	on	the	field	over	one	saved	on	the	object):

const	requiredRole	=	field._requiredRole	||	objectType._requiredRole

We	use	underscores	for	data	we	save	(._requiredRole		and		._wrappedResolveFn)	and	for	the	method	we	define
(._wrapResolveFn())	to	indicate	they’re	private	(not	meant	to	be	used	/	called	by	code	outside	this	class).

Note	that		visitFieldDefinition()		receives	a	second	argument	with	that	field’s	object	type.	Here	are	all	the	methods
that	have	second	arguments:

	visitFieldDefinition(field,	{	objectType	})	

	visitArgumentDefinition(argument,	{	field,	objectType	})	

Chapter	11:	Server	Dev

438

https://github.com/apollographql/graphql-tools/blob/87f32f57f014715d6a311793e3929d39205e2578/src/schemaVisitor.ts#L91-L130

	visitEnumValue(value,	{	enumType	})	

	visitInputFieldDefinition(field,	{	objectType	})	

	visitSchema(schema,	visitorSelector)		(see	explanation	of		visitorSelector)

Finally,	let’s	add	our	new	directive	class	to	our	server:

	src/directives/index.js	

import	TshirtDirective	from	'./TshirtDirective'

import	UppercaseDirective	from	'./UppercaseDirective'

import	AuthDirective	from	'./AuthDirective'

export	default	{

		tshirt:	TshirtDirective,

		upper:	UppercaseDirective,

		auth:	AuthDirective

}

Now	we	can	test	out	the	directive:

	src/schema/User.graphql	

type	User	@auth(requires:	USER)	{

		id:	ID!

		firstName:	String!

		lastName:	String!

		username:	String!

		email:	String	@auth(requires:	ADMIN)

		photo:	String!

		createdAt:	Date!

		updatedAt:	Date!

}

Without	a		roles		field	on	our	user	doc,	we	get	an	error	and	null	data:

With		"roles":	["USER"]	,	we	get	data	and	an	error:

Chapter	11:	Server	Dev

439

https://github.com/apollographql/graphql-tools/blob/87f32f57f014715d6a311793e3929d39205e2578/src/schemaVisitor.ts#L111-L130
https://github.com/GraphQLGuide/guide-api/blob/directives_0.2.0/src/directives/index.js
https://github.com/GraphQLGuide/guide-api/compare/25_0.2.0...directives_0.2.0

With		"roles":	["USER",	"ADMIN"]	,	we	get	all	the	data:

Subscriptions	in	depth

Server	architecture

Back	in	the	Deployment	options	section,	we	decided	to	deploy	to	a	PaaS	because	our	app	has	subscriptions,	which
don’t	work	on	FaaS.	However,	we	can	split	our	code	into	two	servers:	One	that	handles	subscriptions	and
WebSockets	and	runs	on	a	PaaS	long-running	process,	and	one	that	handles	queries	and	mutations	over	HTTP	and
runs	on	a	FaaS.	This	way,	our	two	tasks,	which	have	very	different	hosting	requirements,	can	be	maintained	and
scaled	independently	according	to	their	needs.

Let’s	recall	what	our	subscription	code	looks	like.	When	the	client	sends	this	operation:

subscription	{

Chapter	11:	Server	Dev

440

		githubStars

}

Our		Subscription.githubStars.subscribe		function	is	called:

	src/resolvers/Github.js	

import	{	pubsub	}	from	'../util/pubsub'

export	default	{

		Subscription:	{

				githubStars:	{

						subscribe:	()	=>	pubsub.asyncIterator('githubStars')

				}

		}

}

The	server	now	keeps	the	WebSocket	open	and	sends	over	it	anything	that’s	published	to	the		githubStars		iterator
(pubsub.publish('githubStars',	foo)).

When	our	server	starts	up,	we	start	polling:

	src/index.js	

const	start	=	()	=>	{

		Github.startPolling()

		...

}

	src/data-sources/Github.js	

export	default	{

		async	fetchStarCount()	{

				const	data	=	await	githubAPI.request(GUIDE_STARS_QUERY).catch(console.log)

				return	data	&&	data.repository.stargazers.totalCount

		},

		startPolling()	{

				let	lastStarCount

				setInterval(async	()	=>	{

						const	starCount	=	await	this.fetchStarCount()

						const	countChanged	=	starCount	&&	starCount	!==	lastStarCount

						if	(countChanged)	{

								pubsub.publish('githubStars',	{	githubStars:	starCount	})

								lastStarCount	=	starCount

						}

				},	1000)

		}

}

When	the	number	of	stars	changes,	the	new	count	is	published	to	the		githubStars		iterator,	and	the	server	sends	it
out	to	all	the	clients	who	have	subscribed.

All	the	above	code	can	be	separated	into	a	new	Node	server.	In	fact,	since	we	switched	from	the	default	in-memory
pubsub	to	Redis	PubSub,	the	code	that	publishes	updates	doesn’t	need	to	be	in	the	same	process	that	receives
subscriptions	and	handles	WebSockets!	So	if	we	wanted,	we	could	have	three	servers:

Subscription	server:	A	PaaS	that	supports	WebSockets
Query	and	mutation	server:	FaaS
	githubStars		publishing	server:	FaaS	with	scheduled	periodic	executions

Chapter	11:	Server	Dev

441

Usually,	most	of	an	app’s	publishing	comes	from	the	mutation	server:	When	a	mutation	changes	data,	it	publishes	the
change	with	the	new	data.	When	we’re	publishing	data	from	an	external	source,	then	we	need	a	function	triggered	on
a	schedule	to	check	for	changes	or	the	source	has	to	notify	us	when	things	change	(a	webhook).	When	data	is
changed	from	places	outside	our	mutation	server,	we	can	publish	to	our	subscriptions	in	three	different	ways:

Have	those	other	places	(for	instance,	a	legacy	application	that	works	with	the	same	business	data)	publish	the
changes	they	make	to	Redis.
Have	a	long-running	server	poll	the	database	for	changes.	This	can	take	a	significant	amount	of	memory,	since
the	process	needs	to	keep	the	current	state	of	the	data	in	order	to	see	what	has	changed.	On	the	other	hand,	it
scales	well	with	high	write	loads	(since	changing	data	doesn’t	trigger	anything).	This	is	the	strategy	Hasura	uses.
Use	a	special	database:

RethinkDB	provides	change	feeds	as	a	way	to	be	notified	when	the	results	of	a	query	change	(though	not	all
possible	queries	are	supported).
MongoDB	provides	an	oplog—a	log	of	all	database	operations—that	we	can	have	a	server	listen	to	(tail).	If
data	changes	frequently,	it	can	take	a	significant	amount	of	CPU	to	process	the	oplog,	determining	which
operations	are	changes	that	should	be	published	for	our	subscriptions.

In	the	Meteor	framework,	you	can	use	a	mix	of	oplog	tailing	and	polling	when	oplog	tailing	is	too	CPU-intensive.

Subscription	design

Our		githubStars		subscription	is	basic—just	a	single	scalar	value.

type	Subscription	{

		githubStars:	Int

}

Usually	subscriptions	are	for	getting	updates	to	an	object	or	list	of	objects.	For	instance,	our		createReview	
subscription	updates	clients	on	objects	being	added	to	the	list	of	reviews.

type	Subscription	{

		reviewCreated:	Review!

}

If	we	wanted	to	get	all	types	of	updates,	we	have	three	options:

1)	Adding		reviewUpdated		and		reviewDeleted	:

type	Subscription	{

		reviewCreated:	Review!

		reviewUpdated:	Review!

		reviewDeleted:	ID!

}

2)	A	single		reviews		subscription:

type	Subscription	{

		reviews:	ReviewsPayload

}

union	ReviewsPayload	=	

		CreateReviewPayload	|	

		UpdateReviewPayload	|	

		DeleteReviewPayload

type	CreateReviewPayload	{

		review:	Review!

}

Chapter	11:	Server	Dev

442

https://rethinkdb.com/
https://www.meteor.com/

type	UpdateReviewPayload	{

		review:	Review!

}

type	DeleteReviewPayload	{

		reviewId:	ID!

}

Here	we	could	share	the	same	payloads	as	the		createReview	,		updateReview	,	and		deleteReview		mutations.

3)	Calling		reviewCreated		and	a		review(id)		subscription	for	each	review	loaded	on	the	page:

type	Subscription	{

		reviewCreated:	Review!

		review(id:	ID!):	ReviewPayload!

}

union	ReviewsPayload	=	

		UpdateReviewPayload	|	

		DeleteReviewPayload

Options	#1	and	#2	are	similar	in	that	the	client	gets	updates	to	the	entire	list	of	reviews.	In	#2,	they	have	to	make
fewer	subscriptions.	In	#1,	they	have	more	flexibility	if	for	some	reason	they	only	wanted	to	subscribe	to
	reviewCreated		and	not	the	others.	In	#3,	the	client	makes	many	more	subscriptions,	but	doesn’t	have	to	deal	with
receiving	events	about	reviews	they	don’t	care	about.	In	#1	and	#2,	unless	the	user	has	scrolled	enough	to	load	the
entire	list	on	the	page,	they’re	getting	events	about	review	objects	that	aren’t	on	the	page	or	in	the	cache,	and	ignoring
them.	Given	that	it	takes	resources	to	receive	WebSocket	messages	and	check	to	see	if	the	review	is	in	the	cache,	we
may	want	to	go	with	#3.	In	our	use	case,	though,	editing	and	deleting	reviews	happens	infrequently,	and	even	if
adding	reviews	happens	frequently,	those	events	are	usually	all	relevant,	since	the	default	sort	order	is	most	recent.
So	we	might	go	with	the	simplicity	of	#2.

If	we	had	a	review	detail	page	that	just	showed	a	single	review,	we	would	use	the		review(id)		subscription.	If	the
page	also	had	a	list	of	comments,	then	we	might	do:

type	Subscription	{

		reviewCreated:	Review!

		review(id:	ID!):	ReviewPayload!

		commentsForReview(reviewId:	ID!):	CommentsPayload!

}

union	ReviewsPayload	=	

		UpdateReviewPayload	|	

		DeleteReviewPayload	|

union	CommentsPayload	=	

		CommentCreatedPayload	|

		CommentUpdatedPayload	|

		CommentDeletedPayload

Of	course,	if	we	had	(or	thought	we	might	have	in	the	future)	a	different	kind	of	comment	elsewhere	in	our	app,
we	would	change	all	the	instances	of		Comment*		to		ReviewComment*	.

And	if	the	client	was	on	page		/review/123	,	we	would	subscribe	to		review(id:	"123")		and		commentsForReview(id:
"123")	.	As	before	with	the	list	of	reviews,	if	there	might	be	a	lot	of	comments	and	comment	edit/delete	activity,	and
only	some	of	the	comments	were	shown	on	the	page,	we	might	instead	subscribe	to	updates	to	each	individual
comment:		comment(id:	"<comment	id>")	.

The	design	of	our	subscriptions	depends	on	which	client	views	we	want	realtime	updates	for,	the	size	of	the	data	set,
and	the	frequency	of	updates.	We	take	into	consideration	how	much	work	it	takes	for	the	client	to	make	the
subscriptions,	how	much	work	it	takes	them	to	filter	out	unwanted	messages,	and	also	avoiding	overfetching	data	on

Chapter	11:	Server	Dev

443

the	messages	we	do	want.	For	instance,	we	return	just	the	ID	of	a	deleted	object	instead	of	the	whole	object.	And	if
we	had	a	granular		changeReviewStars		mutation,	we	could	union	and	resolve	to	a		ChangeReviewStarsPayload		type.	The
client	could	then	only	select	the		stars		field	instead	of	the	whole	review:

fragment	ChangeReviewStars	on	ChangeReviewStarsPayload	{

		review	{

				id

				stars

		}

}

fragment	CreateReview	on	CreateReviewPayload	{

		review	{

				id

				text

				stars

				createdAt

		}

}

fragment	DeleteReview	on	DeleteReviewPayload	{

		reviewId

}

subscribe	{

		reviews	{

				...ChangeReviewStars

				...CreateReview

				...DeleteReview

		}

}

Security
Background:	HTTP,	Databases,	Authentication

Auth	options
Authentication
Authorization

Denial	of	service

In	this	section,	we’ll	start	out	with	an	overview	of	general	server-side	security	and	then	get	to	a	few	topics	specific	to
GraphQL.

Computer	security	is	protecting	against:

Unauthorized	actions
Theft	or	damage	of	data
Disruption	of	service

Here	are	a	few	levels	of	vulnerability	relevant	to	securing	servers	from	the	above	threats,	along	with	some	methods	of
risk	management:

People	and	their	devices:	People	that	have	access	to	our	systems,	like	employees	at	our	company,	hosting
companies,	and	service	companies	like	Auth0.

Train	employees	on	security,	including	avoiding	the	most	common	malware	avenues:	visiting	websites	and
opening	files.
Avoid	personal	use	of	work	devices.
Install	antivirus	on	work	computers.
Vet	employee	candidates.
Access	production	systems	and	data	from	a	limited	number	of	devices	that	are	not	used	for	email	or	web

Chapter	11:	Server	Dev

444

https://thewirecutter.com/blog/best-antivirus/
https://checkr.com/

browsing.
Physical	access:	The	capability	to	physically	get	to	servers	that	store	or	handle	our	data.

Make	sure	device	hard	drives	are	encrypted	with	complex	login	passwords,	or	locked	away	when	not	in	use.
Assess	risk	level	of	our	service	companies	(for	example	AWS	perimeter	security).

Network:	Users	being	able	to	access	our	server	over	the	internet	or	view	data	in	transit.
Keep	our	server	IP	addresses	private.
Use	a	DNS	provider	that	hides	our	server	IPs	and	handles	DDoS	attacks	(like	Cloudflare	or	AWS’s	Sheild
Standard,	CloudFront,	&	Route	53).
Force	HTTPS:	When	a	client	makes	a	connection	to	our	server	on	port	80	(unencrypted),	redirect	them	to
port	443,	which	will	ensure	all	further	data	sent	between	us	and	the	client	is	encrypted.

Operating	system:	Hackers	exploiting	a	vulnerability	in	our	server	OS	(usually	Linux).
Apply	security	patches	or	use	a	PaaS	or	FaaS,	where	OS	security	is	taken	care	of	for	us.

Server	platform:	Node.js.
Apply	security	updates	to	Node.js,	or	use	a	PaaS	or	FaaS,	where	security	updates	are	done	automatically.

Application	layer:	GraphQL	execution	and	our	code.	The	following	sections	cover	this	area	of	security.

After	we	implement	protections,	we	can	hire	a	firm	to	do	a	security	audit	and	use	HackerOne	to	find	areas	we	didn’t
sufficiently	cover.

Any	system	can	be	hacked—it’s	just	a	matter	of	the	level	of	resources	put	into	hacking.	The	two	largest	sources
relevant	to	companies	are	eCrime	(criminal	hacking—often	financial	or	identity	theft)	and	the	Chinese	government
(stealing	trade	secrets	from	foreign	companies).	Most	large	companies	have	been	hacked	at	some	point	to	some
degree.

After	we	have	been	hacked,	it’s	important	to	be	able	to:

1.	 Figure	out	how	it	happened.
2.	 Ensure	the	attackers	no	longer	have	access.
3.	 Know	what	data	was	accessed.
4.	 Recover	deleted	data.

For	#1	and	#3,	we	can	set	up	access	logs	for	our	production	servers,	databases,	and	sensitive	services,	and	for	#4,
we	can	set	up	automatic	database	backups	(MongoDB	Atlas	has	options	for	either	snapshots	or	continuous	backups).
Step	#2	depends	on	#1—if	one	of	our	service	accounts	was	compromised,	we	can	change	the	password.	If	one	of	our
API	user’s	accounts	was	stolen	(session	token,	JWT,	or	password),	then	we	need	to	delete	their	session	or	re-deploy
with	code	that	blocks	their	JWT	(and	if	we’re	using	password	authentication,	delete	their	current	password	hash	and
send	a	password	reset	email).

One	important	way	to	mitigate	the	damage	of	a	database	hack	is	hiding	sensitive	database	fields—either	by	storing
only	hashes,	in	the	case	of	passwords,	or	by	storing	fields	encrypted	(using	an	encryption	key	that’s	not	stored	in	the
database).	Then	an	attacker	won’t	know	the	user’s	password	(which	they’d	likely	be	able	to	use	to	log	in	to	the	user’s
accounts	on	other	sites),	and	they	won’t	be	able	to	read	sensitive	data	unless	they	also	gain	access	to	the	encryption
key.

Here	are	a	few	application-layer	security	risks	that	apply	to	API	servers	in	general—not	just	GraphQL	servers:

Parameter	manipulation:	When	clients	alter	operation	arguments.	We	protect	against	this	by	checking	arguments
to	ensure	they’re	valid,	and	by	not	trusting	them	(for	instance,	we	should	use	the		userId		from	the	context	instead
of	from	an	argument).
Outdated	libraries:	Our	code	depends	on	a	lot	of	libraries,	any	of	which	may	have	security	vulnerabilities	that
affect	our	app.	For	Node.js,	we	can	use		npm	audit		to	check	for	vulnerabilities	in	our	libraries.
Database	injection	like	SQL	injection	and	MongoDB	injection
XSS:	On	the	client,	preventing	XSS	involves	sanitizing	user-provided	data	before	it’s	added	to	the	DOM,	but	on
the	server,	we	use	a	Content-Security-Policy	header.
Clickjacking:	Use	[X-Frame-Options	headers](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/

Chapter	11:	Server	Dev

445

https://aws.amazon.com/compliance/data-center/perimeter-layer
https://www.cloudflare.com/
https://aws.amazon.com/answers/networking/aws-ddos-attack-mitigation/
https://en.wikipedia.org/wiki/Information_security_audit
https://www.hackerone.com/
https://en.wikipedia.org/wiki/SQL_injection
https://blog.websecurify.com/2014/08/hacking-nodejs-and-mongodb.html
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://en.wikipedia.org/wiki/Clickjacking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/

Race	conditions,	especially	TOCTOU:	Imagine	multiple	of	our	servers	are	running	the	same	mutation	from	the
same	user	at	the	same	time.	We	may	need	to	use	database	transactions	or	other	logic	to	prevent	this	type	of
attack.
Number	processing:	Bugs	that	involve	working	with	numbers,	including	conversion,	rounding,	and	overflows.

Auth	options

Auth	is	an	imprecise	term—sometimes	it’s	used	to	mean	authentication,	sometimes	authorization,	and	sometimes
both.	In	this	case,	we	mean	both:

Authentication
Authorization

Authentication

Background:	Authentication

The	server	receives	a	JWT	or	session	ID	in	an	HTTP	header,	which	it	uses	to	decode	or	look	up	the	user.	If	we’re
putting	our	GraphQL	server	in	front	of	existing	REST	APIs,	then	we	may	want	to	just	pass	the	header	along	to	the
REST	APIs—they	can	continue	doing	the	authentication	(and	authorization),	returning	null	or	returning	errors	that	we
can	format	as	GraphQL	errors.

However,	usually	we’ll	handle	user	decoding	in	the	GraphQL	server.	In	the	case	of	federation,	we	decoded	the	user	in
the	gateway	and	passed	the	object	in	a		user		header	to	the	services.	In	the	case	of	our	monolith,	we	decoded	in	the
	context		function	and	provided		context.user		to	the	resolvers.

But	how	does	the	client	get	the	JWT	or	session	ID	in	the	first	place?	In	our	case,	we	used	an	external	service:	We
opened	a	popup	to	an	Auth0	site	that	did	both	signup	and	login	and	provided	the	client	with	a	JWT.	Other	options
include:

Hosting	our	own	identity	server	(for	example	the	free,	open-source	Ory	server).
Adding	HTTP	endpoints	to	our	GraphQL	server	(for	example	with	the	Passport	library).
Adding	mutations	to	our	GraphQL	server	(for	example	the	accounts-js	library	adds		Mutation.register	,
	Mutation.authenticate	,	etc.	to	our	schema).
Using	our	hosting	provider’s	identity	service	(for	example	Netlify	Identity	if	our	server	is	hosted	with	Netlify
Functions,	or	Amazon	Cognito	with	AWS	Lambda).

Hosting	our	own	separate	identity	server	might	be	the	most	common	solution.

Authorization

After	we	authenticate	the	client,	we	either	have	their	decoded	token	object	(in	the	case	of	JWTs)	or	their	user	object
(in	the	case	of	sessions).	Both	the	token	and	the	user	object	should	have	the	user’s	permissions.	Permissions	can	be
stored	in	different	ways—usually	a	list	of	roles	or	scopes,	or,	at	its	most	simple,	as	an		admin		boolean	field.

Once	we	have	the	user’s	permission	info,	our	server	has	to	determine	which	data	to	allow	the	user	to	query	and	which
mutations	to	allow	the	user	to	call.	There	are	a	number	of	different	places	where	we	can	make	this	determination:

REST	services:	In	the	case	of	putting	a	GraphQL	gateway	in	front	of	existing	REST	services	that	already	do
authorization	checks,	we	can	continue	to	let	them	do	the	checks.
Context:	If	we	only	want	logged-in	users	to	be	able	to	use	our	API,	we	can	throw	an		AuthenticationError		in	our
	context()		function	whenever	the	HTTP	header	is	missing	or	the	decoding/session	lookup	fails.
Model:	We	can	do	the	checks	in	our	data-fetching	code.	This	is	the	best	option	when	we	have	both	a	GraphQL
and	REST	API,	both	of	which	call	the	model	code.	(This	way,	we	don’t	have	to	duplicate	authorization	checks.)
Directives:	We	can	add	directives	to	fields	or	types	in	our	schema—for	instance,		@isAuthenticated		or

Chapter	11:	Server	Dev

446

https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://www.ory.sh/kratos/
http://www.passportjs.org/
https://github.com/accounts-js/accounts
https://docs.netlify.com/functions/functions-and-identity/#access-identity-info-via-clientcontext
https://www.apollographql.com/docs/apollo-server/deployment/netlify/
https://aws.amazon.com/cognito/

	@hasRoles(roles:	[ADMIN])	.	A	library	we	can	use	that	defines	these	directives	for	us	is	graphql-auth-directives.
Resolvers:	In	the	server	we	built	in	this	chapter,	we	did	all	our	authorization	checks	in	our	resolver	functions.	The
biggest	downside	to	this	approach	is	repetition	as	the	schema	gets	larger—for	instance,	we’d	probably	wind	up
with	a	lot	of		if	(!user)	{	throw	new	ForbiddenError('must	be	logged	in')	}	.	It’s	also	harder	to	get	a	broader
sense	of	which	parts	of	the	schema	have	which	authorization	rules.	With	directives,	we	can	easily	scan	through
the	schema,	and	with	middleware,	we	can	look	at	the	below		shield({	...	})		configuration	and	see	everything
together.
Middleware:	We	can	use		graphql-middleware	—functions	that	are	called	before	our	resolvers	are	called.	In
particular,	we	can	configure	the	GraphQL	Shield	middleware	library	to	run	authorization	functions	before	our
resolvers	like	this:

const	isAuthenticated	=	rule({	cache:	'contextual'	})(

		async	(parent,	args,	context,	info)	=>	{

				return	context.user	!==	null

		}

)

const	isAdmin	=	rule({	cache:	'contextual'	})(

		async	(_,	__,	context)	=>	{

				return	context.user.roles.includes('admin')

		}

)

const	isMe	=	rule({	cache:	'strict'	})(

		async	(parent,	_,	context)	=>	{

				return	parent._id.equals(context.user._id)

		}

)

const	permissions	=	shield({

		Query:	{

				me:	isAuthenticated,

				secrets:	isAdmin

		},

		Mutation:	{

				createReview:	isAuthenticated

		},

		User:	{

				email:	chain(isAuthenticated,	isMe)

		},

		Secret:	isAdmin

})

The	equivalent	directives	schema	would	be:

type	Query	{

		user(id:	ID!):	User

		me:	User	@isAuthenticated		

}

type	Mutation	{

		createReview(review:	CreateReviewInput!):	Review	@isAuthenticated

}

type	Secret	@hasRole(roles:	[ADMIN])	{

		key:	String

}

And	for		User.email	,	we	could	either	do	a	resolver	check	or	create	a	new	directive.

In	each	of	the	last	three	authorization	locations—directives,	resolvers,	and	middleware—we	have	to	be	careful
about	adding	rules	only	to	our	root	query	fields.	Since	our	data	graph	is	interconnected,	oftentimes	there	will	be	other
ways	to	reach	a	sensitive	type	through	a	connection	from	another	field.	So	it’s	usually	necessary	to	add	rules	to	types,
as	we	do	with	the		Secret		type	above.	Unfortunately,	we	can’t	do	that	in	resolvers—just	directives	and	middleware.

Chapter	11:	Server	Dev

447

https://github.com/grand-stack/graphql-auth-directives
https://github.com/prisma-labs/graphql-middleware
https://github.com/maticzav/graphql-shield

Denial	of	service

Denial	of	service	is	a	type	of	attack	in	which	the	attacker	overloads	our	servers’	capacity	to	process	requests,	resulting
in	legitimate	users	being	unable	to	use	our	app.	While	some	attacks	are	below	the	application	layer	(like	on	TCP	or
HTTP),	those	are	usually	taken	care	of	by	our	DNS	and/or	hosting	provider	(at	least	in	the	case	of	PaaS	and	FaaS).	In
this	section,	we’ll	look	at	application	layer	attacks,	which	can	be	separated	into	two	buckets:	expensive	requests	and	a
large	number	of	requests.	We	want	to	guard	against	both.

First,	guarding	against	expensive	requests—requests	that	take	up	significant	resources	while	the	server	processes
them:

Safelisting:	If	our	API	is	private—only	for	use	by	our	own	client	code—then	we	can	safelist	our	queries.	We’ll	send
Apollo	Graph	Manager	our	client	queries	during	a	build	step	in	the	client	repo(s),	and	then	our	server	will	check	all
incoming	requests	against	the	registered	queries	in	Graph	Manager	and	reject	any	unrecognized	queries.	If	our
API	is	public,	however,	we	can’t	safelist,	because	we	want	third-party	devs	to	be	able	to	construct	whatever
queries	they	need.
Validate	arguments:	Attackers	can	alter	arguments	to	take	up	resources.	For	instance,	if	we	have	a		username	
argument	in	our		signup		mutation,	and	then	we	save	it	to	the	database	without	checking	the	length,	an	attacker
could	provide	a	long	string	that	takes	up	a	gigabyte	of	hard	drive	space.	Soon,	our	database	would	become	full,
which	would	prevent	us	from	storing	any	further	data.
Add	a	timeout:	If	a	request	isn’t	done	after	N	milliseconds,	terminate	it.
Limit	depth:	One	way	to	make	a	query	expensive	is	to	make	it	really	deep—continuing	to	select	connection	fields
(like		query	{	posts	{	comments	{	users	{	posts	{	comments	{	...etc.	}}}}}}).	We	can	use	the		graphql-depth-
limit		library	for	this.
Limit	complexity:	This	is	a	more	advanced	technique	than	just	limiting	depth	and	involves	assigning	a	complexity
cost	value	to	each	field	and	limiting	the	total	cost	of	a	query.	We	can	implement	this	using		graphql-validation-
complexity	,	or,	if	we	want	more	flexibility,		graphql-cost-analysis	,	which	allows	us	to	multiply	costs	by	arguments
or	parent	multipliers.

We	can	guard	against	a	large	number	of	requests	by	rate	limiting.	GitHub	uses	a	combination	of	rate	limiting	and	cost
analysis	for	its	public	API—we	can’t	make	queries	with	a	total	cost	of	more	than	5,000	points	per	hour.	There’s	not	yet
an	open-source	library	that	does	this.	(If	you	write	one,	let	us	know	so	that	we	can	link	to	it!	And	you	may	want	to	use
a	leaky	bucket	algorithm	instead	of	a	fixed	window.)	The		graphql-rate-limit-directive		library	provides	a	directive
that	allows	us	to	limit	the	number	of	times	a	particular	field	or	object	is	selected	within	a	certain	time	window.

Hide	schema:	A	common	practice	for	private	GraphQL	APIs	is	disabling	introspection	in	production.	This	is	the
default	behavior	of	Apollo	Server.	While	it	doesn’t	guard	against	expensive	operations,	it	makes	it	harder	for	an
attacker	to	construct	them,	since	they	can’t	just	open	Playground	and	read	through	the	schema.

In	addition	to	blocking	requests	that	are	too	complex	or	too	frequent,	we	can	reduce	the	amount	of	resources	each
request	takes.	For	instance,	instead	of	doing	all	the	work	needed	during	the	request,	in	some	cases	we	can	send	a
response	and	then	queue	a	job	to	be	executed	by	a	different	server,	clearing	more	room	for	our	API	server	to	handle
more	requests.	Another	example	is	caching—we	can	reduce	the	load	on	our	database	by	using	a	cache,	which	we’ll
get	to	in	the	next	section,	Performance	>	Caching.

Many	of	these	techniques	are	implemented	for	us	automatically	when	we	use	a	backend-as-a-service	like	Hasura.

Performance
Background:	HTTP,	Latency,	Databases,	CDN

Performance	is	mostly	about	speed—how	quickly	can	the	client	receive	a	response.	It’s	also	about	load	(how	much
work	a	server	is	doing)	since	high	load	(caused	by	many	concurrent	requests)	can	result	in	either	slower	responses	or
no	responses	 .	Capacity	is	defined	as	either	the	load	a	server	can	handle	before	it	fails	to	respond	or	before	its

Chapter	11:	Server	Dev

448

https://www.apollographql.com/docs/graph-manager/operation-registry/
https://github.com/stems/graphql-depth-limit
https://github.com/4Catalyzer/graphql-validation-complexity
https://github.com/pa-bru/graphql-cost-analysis
https://developer.github.com/v4/guides/resource-limitations/#rate-limit
https://en.wikipedia.org/wiki/Leaky_bucket
https://github.com/ravangen/graphql-rate-limit

response	speed	decreases.

There	are	many	places	in	the	request-response	cycle	where	we	can	improve	speed	or	increase	capacity.	They	all
have	different	costs	(in	terms	of	development	time,	maintenance,	and	money)	and	different	levels	of	improvement.	An
essential	aspect	of	performance	engineering	is	measurement.	We	need	to	know	how	long	things	take	or	how	much
load	we	can	handle	before	we:

1.	 Decide	we	want	to	improve	(performance	/	scalability	is	a	common	area	of	premature	optimization).
2.	 Make	improvements	(so	we	can	compare	measurements	before	and	after	to	determine	how	effective	the	change

is).

We	can	determine	our	capacity	with	load	testing,	using	k6	with		easygraphql-load-tester		to	make	many	simultaneous
requests.	We	can	measure	server-side	performance	with	Graph	Manager	like	we	did	in	the	Analytics	section:	request
rate	and	response	time,	as	well	as	resolver	timelines.	Resolvers	usually	spend	most	of	their	time	making	database
queries	(which	we’ll	examine	in	the	next	section,	Data	fetching),	but	if	we	wanted	to	look	at	exactly	how	long	each	one
takes,	we	could	do	that	as	well	(how	we	do	that	depends	on	which	database	we’re	using).

We	also	want	to	measure	the	response	time	from	the	client	in	order	to	spot:

Longer	times	due	to	latency	or	limited	bandwidth.
Shorter	times	due	to	CDN	or	browser	caching.

Caching	has	its	own	section,	but	here	are	a	couple	of	other	ways	to	improve	speed	measured	from	the	client:

Use	an	HTTP/2	server	(like	Node.js	10+).
Use	automatic	persisted	queries	(APQ).

HTTP/2:	Browsers	limit	the	number	of	HTTP/1.1	connections	to	a	single	server,	so	if	more	than	a	certain	number	of
requests	(usually	six)	are	made,	the	ones	beyond	six	wait	until	the	first	six	are	completed.	This	drastically	increases
the	time	it	takes	the	ones	beyond	six	to	complete.	We	can	fix	this	by	using	HTTP/2,	which	can	make	multiple	requests
over	a	single	connection.

APQ:	When	the	client’s	requests	include	large	queries	and	they’re	on	a	low-bandwidth	connection,	it	can	take	a	long
time	to	send	the	request.	Automatic	persisted	queries	allow	the	client	to	send	a	hash	of	the	query	instead	of	the	whole
thing.	It’s	enabled	by	default	in	Apollo	Server	and	with	a	link	on	the	client.	The	client	creates	a	hash	(a	relatively	small
string)	of	the	query	and	sends	that	to	the	server.	The	first	time	the	server	receives	a	hash,	it	doesn’t	recognize	it	and
returns	an	error.	Then	the	client	replies	with	the	full	query	and	the	hash,	which	the	server	saves.	After	that,	whenever
any	client	sends	that	hash,	the	server	will	recognize	it	and	know	which	query	to	execute.

It’s	also	possible	to	persist	database	queries	(called	prepared	statements	in	SQL),	in	which	the	query	is	stored
in	the	database	and	the	API	server	just	sends	the	query	ID	and	arguments.	This	is	done	for	us	automatically
when	using	Hasura.

Before	a	request’s	processing	reaches	our	resolvers,	the	GraphQL	server	library	has	to	parse	and	validate	the
request.	Then,	during	the	execution	phase,	the	library	calls	our	resolvers.	Different	GraphQL	servers	do	this	process
faster	than	others.	For	Node.js,	the	main	improvement	available	is	compiling	queries	to	code,	which		graphql-jit	
does.	It	integrates	with	Apollo	Server	like	this.	Another	option	for	Python,	Ruby,	and	Node	is	Quiver.

Data	fetching

The	largest	server-side	factor	that	contributes	to	the	response	time	is	how	long	resolvers	take	to	return,	and	the
majority	of	resolvers’	runtime	is	usually	taken	up	by	fetching	data.	In	this	section,	we’ll	cover	the	performance	of	data
fetching	in	our	resolvers.

Some	of	this	section	will	apply	to	subscriptions.	We	also	discussed	scaling	subscription	servers	in	Subscriptions
in	depth	>	Server	architecture.

Chapter	11:	Server	Dev

449

https://k6.io/
https://easygraphql.com/docs/easygraphql-load-tester/usage
https://www.apollographql.com/docs/apollo-server/performance/apq/#setup
https://github.com/zalando-incubator/graphql-jit
https://github.com/zalando-incubator/graphql-jit/blob/master/examples/blog-apollo-server/src/server.ts
https://graphql-quiver.com/

The	three	general	speed	factors,	in	order	of	importance:

1.	 How	many	data	requests	are	made	in	series
2.	 How	long	the	data	source	takes	to	get	the	data
3.	 Latency	between	our	GraphQL	server	and	the	data	source

Here	data	source	means	a	source	of	data,	like	a	database	or	an	API—not	an	Apollo	Server	data	source	class.

Usually,	we	locate	both	our	GraphQL	server	and	our	data	sources	in	the	same	location,	in	which	case	#3	is	very	small
(~0.2ms	when	inside	the	same	AWS	Availability	Zone).	However,	when	they’re	far	apart—for	instance	when	the	data
source	is	an	external	API	hosted	across	the	country—#3	can	become	a	larger	factor	than	#2.

Factor	#2	depends	on	the	type	of	data	source	and	what	data	is	being	requested.	For	databases,	usually	the	largest
factor	is	if	there	is	an	index	that	covers	the	query—otherwise,	the	database	has	to	search	through	all	records	in	the
table/collection,	which	takes	much	more	time.	Another	large	factor	is	whether	data	has	to	be	read	from	disk—it’s	faster
when	the	data	is	already	in	RAM.	(MongoDB	recommends	having	enough	RAM	to	fit	the	working	set—the	indexes
and	data	that	are	accessed	frequently.)

Since	different	types	of	databases	work	differently,	we	may	get	faster	results	by	using	another	database,	in	which
case	we	might	move	or	duplicate	part	or	all	of	our	data	to	the	other	database.	For	instance,	Elasticsearch	handles
search	queries	more	efficiently	than	our	main	database.	We	would	duplicate	all	the	data	we	wanted	searchable	from
our	main	database	to	Elasticsearch,	and	then	we	would	resolve	all	searches	by	querying	Elasticsearch.	Another	type
of	query	that	is	slow	in	many	databases	is	one	that	skips	a	large	number	of	results.	This	issue,	which	we	talk	about	in
the	Pagination	section,	is	one	reason	to	use	cursors.

Another	factor	that	can	improve	database	speed	and	reduce	load	is	avoiding	overfetching—instead	of	fetching	all	the
fields	(for	instance		SELECT	*	FROM	reviews),	we	can	fetch	only	the	ones	needed	for	the	current	query’s	selection	set.	If
we	use	a	library	like	Join	Monster	or	a	platform	like	Hasura,	this	is	done	for	us,	as	well	as	JOINs.	Otherwise	we	can
look	at		info	,	the	fourth	resolver	argument,	to	look	up	which	fields	to	select.

A	large	area	in	which	we	can	reduce	load	on	a	data	source	is	sending	fewer	queries!	One	issue	of	basic
implementations	of	GraphQL	resolvers	and	ORMs	is	the	N+1	problem.	Consider	this	query:

query	{

		post(id:	"abc")	{

				comments	{

						id

						text

				}

		}

}

The	N+1	problem	is	when	our	server	does	1	query	for	the	post	document	and	then	N	comment	queries—one	for	each
ID	in	the		post.commentIds		array.	There	are	actually	two	issues	with	this:

The	comment	queries	are	done	in	parallel,	but	the	post	and	the	group	of	comment	queries	are	done	in	series—
the	post	is	fetched	before	the	comments.	This	is	a	significant	hit	to	our	GraphQL	server’s	response	time.
When	there	are	a	lot	of	comments,	there	are	a	lot	of	comment	queries,	which	is	a	high	load	on	the	server.

The	second	issue	is	fixed	by	DataLoader,	which	batches	all	the	comment	queries	into	a	single	query.	To	learn	how	to
use	DataLoader,	see	the	Custom	data	source	section.	Also,	if	our	data	source	is	existing	REST	APIs,	we	can
generate	DataLoader	code	with	Yelp’s		dataloader-codegen		library.

To	fix	the	first	issue,	we	need	the		post		resolver	to	fetch	both	the	post	and	the	comments	at	the	same	time.	If	we	use
Join	Monster	or	Hasura,	this	is	done	for	us.	If	we	use	MongoDB,	we	have	two	options:

Use	a	de-normalized	structure	in	the	posts	collection,	storing	an	array	of	comment	objects	inside	each	post
document—then	fetching	the	post	will	get	the	comments	as	well.

Chapter	11:	Server	Dev

450

https://docs.atlas.mongodb.com/sizing-tier-selection/#memory
https://www.apollographql.com/docs/graphql-tools/resolvers/#resolver-function-signature
https://github.com/Yelp/dataloader-codegen

Use	the		info		resolver	arg:
Store	each	comment	with	a		postId		field.
Look	at		info		to	see	if		comments		is	selected.
If	it	is	selected,	query	for	both	the	post	and	the	comments	at	the	same	time.

const	resolvers	=	{

		Query:	{

				post:	async	(_,	{	id	},	{	dataSources	},	info)	=>	{

						const	postPromise	=	dataSources.posts.findOneById(id)

						if	(commentsIsSelected(info))	{

								const	[post,	comments]	=	await	Promise.all([

										postPromise,

										dataSources.comments.findAllByPostId(id)

])

								post.comments	=	comments

								return	post

						}	else	{

								return	postPromise

						}

				}

		}

}

We	can	use	this		info		technique	with	other	databases	as	well	as	beyond	the	N+1	problem—there	may	be	other
queries	we	can	initiate	early.	Viewing	data	in	the		info		object	can	be	simplified	with	the		graphql-parse-resolve-info	
library.

Caching

Wikipedia’s	definition)	of	a	cache	is	“a	hardware	or	software	component	that	stores	data	so	that	future	requests	for
that	data	can	be	served	faster.”	In	addition	to	improving	speed,	caching	also	reduces	load	on	the	part	of	the	system
that	originally	provided	the	data	that’s	being	cached.	For	instance,	a	CDN	caching	an	HTTP	response	reduces	load	on
our	server,	which	originally	provided	the	response.	And	our		MongoDataSource		caching	documents	reduces	load	on	our
MongoDB	database.

Here	are	the	possible	places	for	caches,	starting	in	the	client	code	that’s	requesting	data,	and	ending	with	the
database:

Client	library:	GraphQL	client	libraries	like	Apollo	Client	cache	response	data	from	previous	requests	in	memory.
Browser	/	Client	OS:	Browsers,	iOS,	and	Android	cache	HTTP	responses	based	on	the		Cache-Control		HTTP
header.
CDN:	CDNs	also	cache	HTTP	responses	based	on		Cache-Control		(see	Background	>	CDN).
Application	server:

Our	GraphQL	server	can	cache	GraphQL	responses	in	a	caching	database	like	Redis.
Our	server’s	data	source	classes	can	cache	database	responses	in	Redis.

Database:	Our	database	has	various	levels	of	caching—in	its	software	that	uses	RAM,	in	the	operating	system,
and	in	the	hard	drives.

It’s	caches	all	the	way	down.	—Yoav	Weiss

Apollo	Server	will	set	the		Cache-Control		header	for	us	as	well	as	save	the	response	to	the	cache.	By	default,
however,	it	assumes	we	don’t	want	data	cached	and	doesn’t	do	so.	We	have	to	tell	it	which	fields	and	types	we	want
cached	and	for	how	long.	Then,	if	a	response	includes	only	those	fields,	it	will	set	the	header	and	save	the	response	in
the	cache.

We	can	tell	Apollo	Server	which	fields	and	types	we	want	cached	with	a	cache	hint.	We	can	provide	the	hint	in	two
ways:

Chapter	11:	Server	Dev

451

https://github.com/graphile/graphile-engine/tree/master/packages/graphql-parse-resolve-info
https://en.wikipedia.org/wiki/Cache_(computing

The		@cacheControl		schema	directive
Calling		info.cacheControl.setCacheHint()		in	our	resolvers

The	first	method	we	can	use	on	both	types	and	fields:

type	Query	{

		hello:	String!

		reviews:	[Review!]!	@cacheControl(maxAge:	120)

		user(id:	ID!):	User

}

type	Review	@cacheControl(maxAge:	60)	{	

		id:	ID!

		text:	String!

		stars:	Int

		commentCount:	Int!	@cacheControl(maxAge:	30)

}

type	User	@cacheControl(maxAge:	600)	{

		id:	ID!

		firstName:	String!

		reviews:	[Review!]!

}

	maxAge		is	in	seconds.	The	lowest		maxAge		is	used.	For	instance,		Review.commentCount		has	a		maxAge		of	30,	so	the
response	to	the	below	query	would	be	cached	for	30	seconds:

query	{

		user(id:	"1")	{

				reviews	{

						text

						stars

						commentCount

				}

		}

}

Whereas	this	would	be	cached	for	60:

query	{

		user(id:	"1")	{

				reviews	{

						text

						stars

				}

		}

}

Similarly,	if	we	didn’t	select		User.reviews	,	the	hint	on		User		would	be	used,	and	the	below	query	would	be	cached	for
10	minutes:

query	{

		user(id:	"1")	{

				firstName

		}

}

Field	cache	hints	override	type	hints,	so	for	the	below	query,		Query.reviews	’s		maxAge:	120		would	be	used	instead	of
	Review	’s		maxAge:	60	:

query	{

		reviews	{

				text

				stars

Chapter	11:	Server	Dev

452

https://www.apollographql.com/docs/apollo-server/performance/caching/#adding-cache-hints-dynamically-in-your-resolvers

		}

}

Finally,	neither	of	the	below	queries	would	be	cached,	as		Query.hello		doesn’t	have	a	hint:

query	{

		hello

}

query	{

		reviews	{

				text

				stars

		}

		hello

}

There’s	one	more	directive	argument:		scope	.	It’s		PUBLIC		by	default,	and	the	other	value	is		PRIVATE	:

type	Query	{

		me:	User!	@cacheControl(maxAge:	300,	scope:	PRIVATE)

}

Apollo	would	set	the	response	header	to		Cache-Control:	max-age=300,	private	.	Including		private		means	that	the
response	should	only	be	stored	in	a	browser’s	cache,	not	a	CDN.	Because	if	a	CDN	stored		Query.me		(the	current
user’s	account),	other	clients	who	made	the	query	would	get	access	to	the	first	user’s	account	data.

Some	advanced	CDNs	like	Cloudflare	actually	support	caching	private	responses	by	matching	them	to	a	single	user
with	an	authentication	token.	Similarly,	Apollo	Server	supports	caching	responses	through	a	function	that	returns	a
session	ID	or	any	unique	string	associated	with	a	user—in	the	below	code,	we	use	the	JWT:

import	responseCachePlugin	from	'apollo-server-plugin-response-cache';

const	server	=	new	ApolloServer({

		...,

		plugins:	[

				responseCachePlugin({

						sessionId:	requestContext	=>	

								requestContext.request.http.headers.get('authorization')	||	null,

				})

]

})

If	Apollo	caches	a	response	with	scope		PRIVATE	,	it	will	also	save	the	session	ID.	If	the	same	request	arrives	later,	and
the	same	session	ID	is	returned	from	this	function,	Apollo	will	use	the	cached	response.

One	issue	with	CDN	caching	is	that	many	CDNs	only	cache	GET	requests,	and	GraphQL	requests	are	usually	made
via	POSTs.	Apollo	Server	supports	GET	requests,	and	clients	can	switch	to	using	them,	but	GET	requests	have	the
query	in	the	URL,	and	sometimes	queries	are	too	long	to	fit	in	a	URL.	However,	we	can	use	automatic	persisted
queries	(discussed	earlier),	which	results	in	clients	using	cacheable	GET	requests	with	short	URLs,	regardless	of	the
query	length.

Future
The	largest	change	to	GraphQL-land	in	the	coming	years	will	be	its	size!	The	S	curve	of	GraphQL	adoption	is
currently	in	the	exponential	phase	(seemingly	exponential—technically,	it’s	logistic).	Here’s	a	graph	of	the		graphql	
package’s	weekly	npm	downloads	over	the	first	5	years:

Chapter	11:	Server	Dev

453

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control#Directives
https://blog.cloudflare.com/token-authentication-for-cached-private-content-and-apis/
https://en.wikipedia.org/wiki/Sigmoid_function
https://www.npmjs.com/package/graphql

And	it	doesn’t	even	include	client	packages	like		apollo-client	,	which	are	also	growing.	At	the	time	of	writing,
	apollo-client		has	1.7M	weekly	downloads.	There’s	also	a	lot	of	room	left	to	grow—according	to	Google	Trends,
REST	still	has	3x	the	interest	that	GraphQL	has:

As	adoption	grows,	more	resources	will	be	put	into	GraphQL	libraries,	tools,	and	services.	The	existing	ones	will
improve,	and	new	ones	will	be	created.

Apollo	Server’s	roadmap	lists	near-term	future	work,	including:
Adding	subscription	support	to	Apollo	Federation.
Adding		@defer		and		@stream		directives.
Invalidation	of	whole-query	cache	through	cache	tags	with	CDN	integration.
Building	a	“graph”	caching	layer	for	the	gateway.

Apollo	Client	also	has	a	roadmap	as	well.
For	some	futuristic-seeming	services	and	tooling,	check	out	this	video	from	the	creator	of	OneGraph	(a	GraphQL
API	that	combines	many	different	companies’	APIs).
An	exciting	area	in	which	we’re	looking	forward	to	growth	is	full-stack	GraphQL	frameworks—the	Ruby	on	Rails	of
GraphQL,	Node,	and	React.	Our	current	favorites	are	RedwoodJS	(a	new	project	based	on	serverless	and
Prisma)	and	Vulcan.js	(a	mature	project	based	on	Meteor	and	MongoDB).

Chapter	11:	Server	Dev

454

https://www.npmjs.com/package/apollo-client
https://github.com/apollographql/apollo-server/blob/master/ROADMAP.md#future-work
https://github.com/apollographql/apollo-client/blob/master/ROADMAP.md
https://www.youtube.com/watch?v=JilN_PvQOqs
https://www.onegraph.com/docs/
https://redwoodjs.com/
http://vulcanjs.org/

There	will	also	be	changes	to	the	language	itself.	In	2018,	Facebook	transferred	the	GraphQL	project	(which	includes
the	spec,	the		graphql-js		reference	implementation,	GraphiQL,	and	DataLoader)	to	a	new	Linux	Foundation	called
the	GraphQL	Foundation.	Anyone	can	discuss	or	propose	changes	to	the	specification	in	its	GitHub	repo,
graphql/graphql-spec,	or	in	the	GraphQL	Working	Group,	a	monthly	virtual	meeting	of	maintainers.

Changes	to	the	spec	go	through	an	RFC	process,	and	the	current	proposals	are	listed	here.	A	few	of	them	are:

The		@defer		and		@stream		query	directives	we	mentioned	on	the	Apollo	Server	roadmap.	Adding		@defer		to	a
field	tells	the	server	they	can	initially	return		null		and	later	fill	in	the	data.	Adding	the		@stream		directive	to	a	field
with	a	list	type	means	the	server	can	send	part	of	the	list	initially,	and	further	parts	of	the	list	later.	These
directives	address	the	fact	that	currently	the	server	only	sends	a	single	response,	which	means	it	has	to	wait	for
all	data	to	arrive	from	its	data	sources.	And	that	means	the	response	time	is	limited	by	the	slowest	source.	With
	@defer		and		@stream	,	the	client	can	get	some	of	the	data	sooner.
The		@live		query	directive,	which	means:	“send	me	the	current	value	of	this	field,	and	then	send	me	the	updated
value	whenever	it	changes.”
The	Input	Union—creating	a	union	type	that	can	be	used	for	arguments.	The	proposal	(a.k.a.	RFC)	is	a	long
document	that	starts	with:

RFC:	GraphQL	Input	Union

The	addition	of	an	Input	Union	type	has	been	discussed	in	the	GraphQL	community	for	many	years	now.	The
value	of	this	feature	has	largely	been	agreed	upon,	but	the	implementation	has	not.

This	document	attempts	to	bring	together	all	the	various	solutions	and	perspectives	that	have	been	discussed
with	the	goal	of	reaching	a	shared	understanding	of	the	problem	space.

From	that	shared	understanding,	the	GraphQL	Working	Group	aims	to	reach	a	consensus	on	how	to	address
the	proposal.

There	are	also	specifications	in	GraphQL-land	other	than	the	GraphQL	spec,	including	the	Relay	Cursor	Connections
spec,	the	Relay	server	spec,	and	the	in-development	GraphQL	over	HTTP	spec.

You	can	contribute	to	the	future	of	GraphQL	by:

Building	things	with	it!
Contributing	to	GraphQL	libraries	and	tools.
Getting	involved	with	the	spec	and	foundation.
Spreading	the	word.

Speaking	of	spreading	the	word,	if	you’d	like	to	recommend	the	Guide	to	a	friend	or	co-worker,	we’d	appreciate	it	
.		https://graphql.guide	.	And	we’d	value	any	feedback	you	may	have	on	the	book	via	GitHub	issues	or	PRs.

To	learn	more	about	GraphQL,	we	recommend:

Books:
Production	Ready	GraphQL:	An	in-depth	discussion	of	production	topics.
Advanced	GraphQL	with	Apollo	&	React:	A	large	tutorial-style	book	based	on	Apollo	Federation	and	React.

Course:	Fullstack	Advanced	React	&	GraphQL
Reading	the	spec

Chapter	11:	Server	Dev

455

https://github.com/graphql/graphql-js
https://foundation.graphql.org/
https://github.com/graphql/graphql-spec
https://github.com/graphql/graphql-wg
https://github.com/graphql/graphql-spec/blob/master/CONTRIBUTING.md
https://github.com/graphql/graphql-spec/tree/master/rfcs
https://github.com/graphql/graphql-spec/blob/master/rfcs/DeferStream.md
https://github.com/graphql/graphql-spec/blob/master/rfcs/Subscriptions.md
https://github.com/graphql/graphql-spec/blob/master/rfcs/InputUnion.md
https://relay.dev/graphql/connections.htm
https://relay.dev/docs/en/graphql-server-specification.html
https://github.com/APIs-guru/graphql-over-http
https://graphql.guide
https://github.com/GraphQLGuide/book/issues
https://book.productionreadygraphql.com/
https://8bit.press/book/advanced-graphql
https://advancedreact.com/
https://spec.graphql.org/draft/

	Preface
	Introduction
	Background
	Chapter 1: Understanding GraphQL Through REST
	Chapter 2: Query Language
	Chapter 3: Type System
	Chapter 4: Validation & Execution
	Chapter 5: Client Dev
	Chapter 6: React
	Chapter 7: Vue
	Chapter 8: React Native
	Chapter 9: iOS
	Chapter 10: Android
	Chapter 11: Server Dev

